- Objectives:
- 1) What are proteins?
- 2) Four levels of structure (primary, secondary, and tertiary, quaternary).
- 3) Protein folding and stability.
- 4) Protein denaturation.(تغير في الخصائص الطبيعية للمادة)
- 5) Protein misfolding and diseases.

What are proteins?
 Proteins are polymers of amino acids joined together by peptide bonds.

البروتينات: هي عبارة عن عدد من الأحماض الأمينية مرتبطة مع بعضها البعض بـ روابط ببتيدية.

• What are the four levels of structure for proteins?

o Primary Structure:

It is the linear sequence of amino acids.

Primary structure of proinsulin

- Secondary Structure:
- It is the local three-dimensional arrangement of a polypeptide backbone.
- Excluding the conformations (3D arrangements) of its side chains.
- o It comes from primary but you can make it like 3D.
- Hydrogen bounding in secondary structure make it Helix or sheet.

1) α Helix:

• A helix is right-handed.(عكس عقارب الساعة)

- It has 3.6 residues (amino acids) per turn.
- The helix is stabilized by hydrogen bonding between carboxylic group and 4_{th} N–H group.
- The amino acid side chains point outward and downward from the helix.
- The core of the helix is tightly packed; its atoms are in van der Waals contact.

The right-handed $\boldsymbol{\alpha}$ helix

(b) Secondary structure

2) β Sheet:

- Two or more polypeptide chains form hydrogen bonding with each other.
- Also called pleated sheets.
- They appear as folded structures with edges.
- تتكون من العديد من الروابط الببتدية مكونة روابط هيدروجينية تربطها مع
 - تسمى أيضاً بالشييت المطوية.

A. Antiparallel β sheets:

- Two or more hydrogen-bonded polypeptide chains run in opposite direction.(متوازیان وبعکس الاتجاه)
- Hydrogen bonding is more stable.

 β pleated sheets. (a) The antiparallel β pleated sheets

Irving Geis/Geis Archives Trust. Copyright Howard Hughes Medical Institute. Reproduced with permission.

A two-stranded $\boldsymbol{\beta}$ antiparallel pleated sheet

B. Parallel b sheets:

- o Two or more hydrogen-bonded polypeptide chains run in the same direction.(متوازیان وبنفس الاتجاه)
- Hydrogen bonding is less stable (distorted) (أقل ثباتاً من).

Irving Geis/Geis Archives Trust. Copyright Howard Hughes Medical Institute. Reproduced with permission.

 β pleated sheets. (β) The parallel b pleated sheets.

- Other secondary structures:
- ✓ Turns (reverse turns).
- ✓ Loops.
- ✓ b bends.
- ✓ Random coils.
 - Supersecondary structures or motifs:
 - ο βαβ motif: α helix connects two β sheets (الفا هيلكز متصلة مع 2 بيتا شييت)
 - \circ β hairpin: reverse turns connect antiparallel β sheets.

(وجود أكثر من بيتا شيت من النوع الغير متوازي مع بعضهم البعض على شكل منعطفات).

o $\alpha\alpha$ motif: two α helices together.

(ألفا هيلكز متصلين مع بعضهما البعض)

 \circ β barrels: rolls of β sheets.

(كأنه برميل من البيتا شييت)

Schematic diagrams of supersecondary structures

Secondary structure of proteins (a-helix, b-sheets, loops, turns, random coils)

- o Tertiary Structure:
- It is the three-dimensional structure of an entire polypeptide chain including side chains.
- It is the folding of secondary structure (a helix and b sheets) and side chains.
- Primary structure+ secondary structure+ side chains (too much).
- Helices and sheets can be combined to form tertiary structure.
- Also we can say the tertiary structure is (domain).

Tertiary structure of proteins (Secondary structure + side chains)

- O What is the Domain?
- Polypeptide chains (>200 amino acids) fold into two or more clusters known as domains.
- o Domains are units that look like globular proteins (تشبه البروتينات الكروية).
- o Domains are parts of protein subunits.
- . tertiary structure بمعنى آخر الدومين هو نفسه

One subunit with two domains

One subunit of the enzyme glyceraldehyde-3-phosphate dehydrogenase from *Bacillus stearothermophilus*

One subunit with three domains

- o Quaternary Structure:
- Many proteins contain two or more polypeptide chains.
- Each chain forms a three-dimensional structure called subunit.
- It is the 3D arrangement of different

- o What is Hemoglobin?
 - Hemoglobin is a globular protein
 (بروتین کروي).
 - A multisubunit protein is called oligomer
 - Composed of $\alpha_2\beta_2$ subunits (4 chains, 4 subunits) (1 ألفا , 2 ألفا , 2 ألفا , 2

• Two same subunits are called protomers.

❖ Protein folding:

❖ Forces that stabilize protein structure:

- 1. Hydrophobic effect:
- Nonpolar groups to minimize their contacts with water.
- o Nonpolar side chains are in the interior of a protein.

○ (المجموعات الغير قطبية والتي تقلل من الاتصال بالماء وموجودة في داخل البروتين)

- 2. Hydrogen bonding.
- 3. Electrostatic interactions (ion pairing):
 - Between positive and negative charges.
 - التفاعلات التي تكون بين الجزيئات المتعادلة وعادة ما تكون تفاعلات ضعيفة.
- 4. van der Waals forces (weak polar forces):
 - ❖ Weak attractive or repulsive forces between molecules.

التجاذب الضعيف بين الجزئيات.

- ❖ Protein denaturation:
 - Denaturation: A process in which a protein looses its native structure.
- ✓ Factors that cause denaturation:
- o Heat: disrupts hydrogen bonding.
- o Change in pH: alters ionization states of aa.
- o Detergents: interfere with hydrophobic interactions.
- Chaotropic agents: ions or small organic molecules that disrupt hydrophobic interactions.
 - ❖ Protein misfolding:
 - Every protein must fold to achieve its normal conformation and function.
 - Abnormal folding of proteins leads to a number of diseases in humans.
- كل بروتين يحصل له إنطواء لكي يتمكن من أداء مهمته بشكل صحيح لكن قد يحصل له إنطواء غير طبيعي يؤدي إلى إصابة الانسان بعدد من الامراض.
- 1) Alzheimer's disease:
 - β-amyloid protein is a misfolded protein
 - It forms fibrous deposits or plaques in the brains of Alzheimer's patients.

- 2) Creutzfeldt-Jacob or prion disease:
 - Piron protein is present in normal brain tissue.
 - In diseased brains, the same protein is misfolded.
 - Therefore it forms insoluble fibrous aggregates that damage brain cells.
- يوجد في جسم الانسان وبالتحديد في نسيج المخ الـPiron , إذا حصل لهذا البروتين Misfold يحصل هذا المرض ويكون مجموعة من الالياف الغير قابلة للذوبان والتى تقوم بإتلاف المخ .

انتهى 🙂