DNA REPLICATION

(TRANSCRIPTION & TRANSLATION)

DONE BY BIOCHEMISTRY TEAM

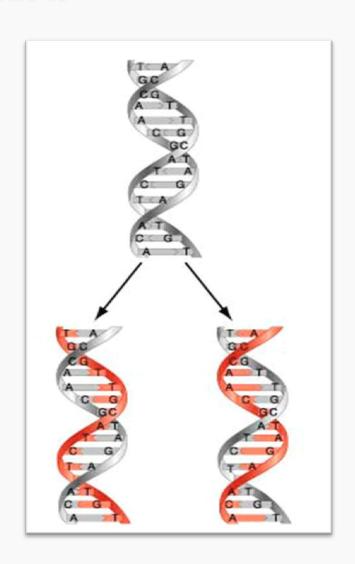
تنصح بمشاهدة الفيديوهات من اليوتيوب لتثبيت المطومات

وننك بعد مذاكرة المحاضرة كاملة

MODEL FOR DNA REPLICATION

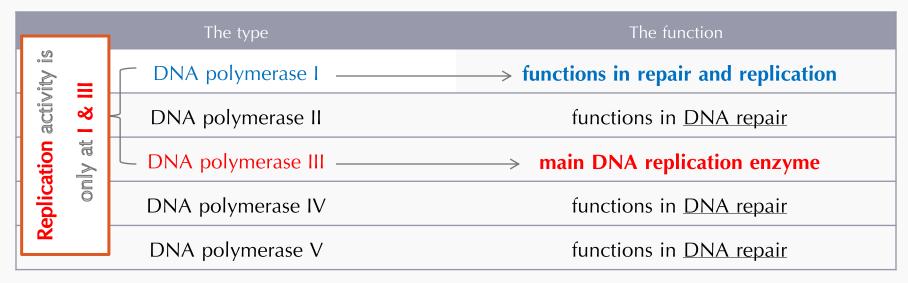
لا يوجد اوبجكتفز لهذه المحاضرة لذا وضعنها من العناوين الرئيسية لكل سلايد

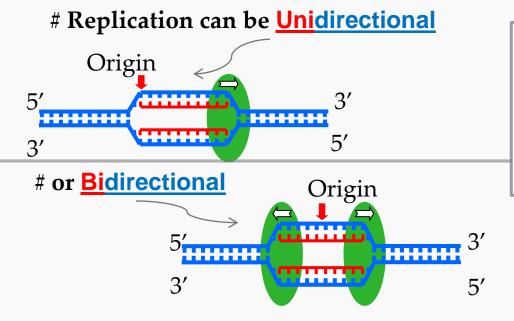
- *Prokaryotic DNA Polymerases
- *Features of DNA Replication
- *Mechanism of DNA Replication
- *Transcription
- *Post-Transcriptional Modifications
- *Translation
- *The Genetic Code


DONE BY ABDULLAH ALATAWI

MOLECULAR BIOLOGY REPLICATION OF DNA

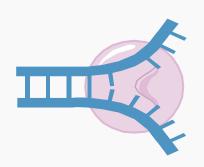
MODEL FOR DNA REPLICATION <u>SEMICONSERVATIVE</u> MODEL:

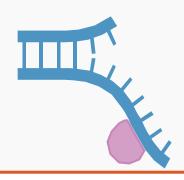

- DAUGHTER DNA MOLECULES
 CONTAIN:
 - one parental strand and.
 - one newly-replicated strand.


نوع الاستنساخ هنا يمكن تسميته بالنوع ﴿شبه المحافظ ﴾ حيث ينتج لدينا شريط مزدوج نصفه من الخلية الأم والنصف الآخر تم انشاؤه حديثاً

Prokaryotic DNA Polymerases :


5 types of DNA polymerases are found in E. coli


Features of DNA Replication:

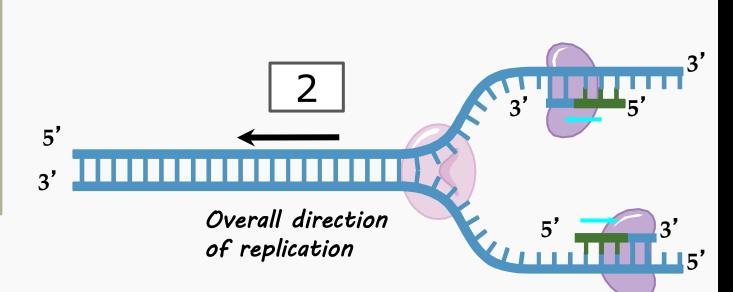

- Semiconservative محافظ جزئياً
- Bidirectional ثنائى الإتجاه
- شبه متقطع Semidiscontinuous

BOTH DAUGHTER STRANDS (LEADING STRAND RED, LAGGING STRAND BLUE) ARE SYNTHESIZED OR REPLICATED IN THEIR 5' TO 3' DIRECTIONS

ENZYMES OF DNA REPLICATION

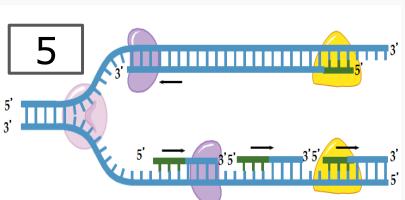
Helicase unwinds parental double helix

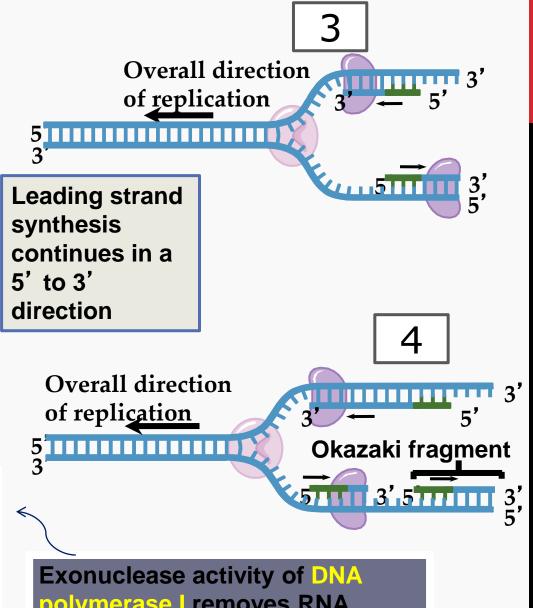
Single-strand Binding protein stabilizes separate strands Primase adds a short primer to template strand


DNA
polymerase
forms new
strands

DNA polymerase I (exonuclease) removes RNA primer and inserts the correct bases

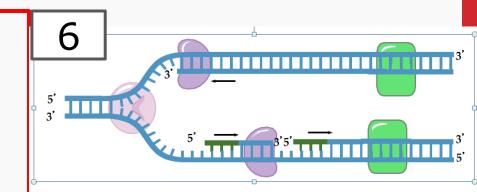
Ligase joins Okazaki fragments and seals gaps in sugar-phosphate backbone


- ✓ Helicase protein binds to DNA sequences called origins and unwinds یفك DNA strands
- ✓ SS binding proteins prevent single strands from rewinding اعادة الالتصاق.
- Primase protein makes a short segment of RNA
- ✓ primer complementary to the DNA


DNA
polymerase
enzyme adds
DNA
nucleotides
to the RNA
primer

- ✓ DNA polymerase adds DNA nucleotides to the RNA primer
- ✓ DNA polymerase proofreads bases added and replaces incorrect nucleotides
- ✓ Discontinuous synthesis produces 5' to 3' DNA segments called

Okazaki fragments



polymerase I removes RNA primers

finally:

Polymerase activity of DNA polymerase I fills the gaps

Ligase forms bonds between sugarphosphate backbone

- Eukaryotic DNA Replication Enzymes: 5 types of DNA polymerases in Eukaryotes
- 1. DNA polymerase α
- 2. DNA polymerase β
- 3. DNA polymerase γ (Gama) \longrightarrow (Mitochondrial DNA replication enzyme)
- 4. DNA polymerase δ
- 5. DNA polymerase ε

A process of mRNA (messenger RNA) synthesis يصنع from DNA (gene)

The enzyme responsible for this process is **RNA polymerase**

Only one of the DNA strands is transcribed

A complementary strand of messenger RNA (mRNA), is produced from the DNA template

يتم نسخ جهة واحدة من الشريط المزدوج ويتكون mRNA

The direction of transcription is $5' \rightarrow 3'$

THE GOLDEN RULE: © DNA MAKES RNA MAKES PROTEIN

5' -AATCGCCATACGCACGCA-3'
3' -TTAGCGGTATGCGTGCGT-5'

DNA

Transcription

5'-AAUCGCCAUACGCACGCA-3' RNA

Translation

N-Asn-Arg-His-Thr-His-Ala-C PROTEIN

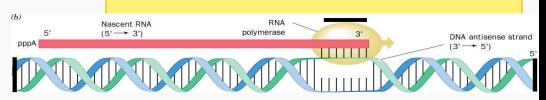
انهاء CHAIN TERMINATION الشريط

DNA contains specific sites which stop transcription

Transcription is terminated <u>at a sequence of 4-10 AT base pairs</u>

مبدأ الشريط CHAIN INITIATION

RNA polymerase binds to <u>promoter region</u> of DNA to start transcription



تطاول CHAIN ELONGATIONAN الشريط

portion of DNA template unwinds (opens) at the point of RNA synthesis by DNA gyrase

This forms a short length of RNA-DNA hybrid

The unpaired "bubble" of DNA in the open initiation complex travels along the direction of RNA polymerase

Capping:

Addition of a methylated guanine nucleotide at 5' end of mRNA *Function*: To prevent mRNA degradation by *exonuclease enzymes*

Polyadenylation:

Addition of a poly A tail (poly Adenylate...AAAAAA...) at 3' end of mRNA *Function*:

To protect the mRNA from degradation For ribosomal RNA recognition

الترجمة (Protein Synthesis)الترجمة

A process of protein synthesis from mRNA mRNA has codes for amino acids present in proteins

components of protein synthesis

- the genetic code
- mRNA
- ribosomes
- tRNAs
- amino acids
- enzymes / protein factors

the process

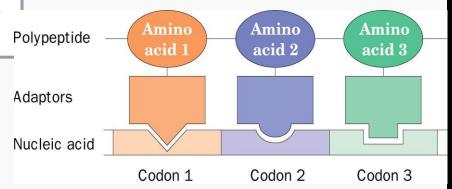
- chain initiation
- chain elongation
- chain termination
- post-translational modifications

THE
GOLDEN
RULE: ©
DNA MAKES
RNA MAKES
PROTEIN

THE GENETIC GODE

A genetic code contains 3 nucleotides

Genetic code is <u>triplet</u> (ثلاثي), like => non-overlapping, (غير متشابك) comma-free


64 possible codons

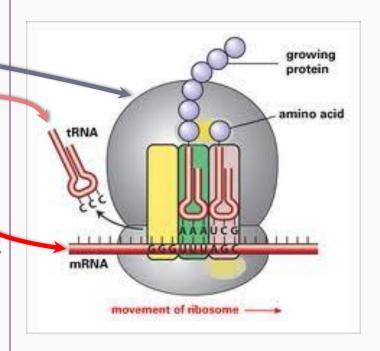
- 61 codons specify 20 amino acids
- 1 Start codon (also specifies an aa)
- **3** stop codons
- The genetic code is degenerate
- One codon can specify only one amino acid
- One amino acid can be coded for by more than one codon
- Mitochondrial DNA has different codons

The genetic code is read by molecules that recognize a particular codon and carry the corresponding amino acid

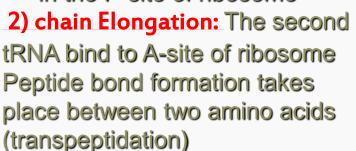
The "Standard" Genetic Code

First position (5' end)		Second position				
	1	U	C	A	G	
U	UUU	Phe	UCU UCC Ser	UAU Tyr UAC	UGU Cys UGC	U C
	UUA	leu	UCA UCG	UAA Stop UAG Stop	UGA Stop UGG Trp	A G
С	CUL CUA CUA	Leu	CCU CCC Pro CCA	CAU His CAC CAA Gh	CGU CGC CGA CGG	U C A G
A	AUC AUC AUC	lle lle	ACU ACC Thr ACA	AAU AAC AAA AAG Lys	AGU Ser AGC AGA AGG Arg	U C A G
G	GUU GUA GUA	Val	GCU GCC GCA Ala GCG	GAU Asp GAC GAA GAG Glu	GGU GGC GGA GGG	U C A G

Chain Initiation


Translation is initiated by **Initiation Factors**:

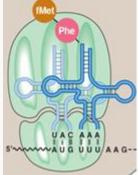
IF-1, IF-2, IF-3


They combine <u>ribosome</u>, <u>mRNA & tRNA</u> together

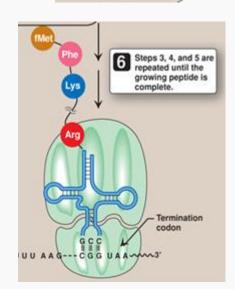
The first tRNA binds to <u>AUG (start</u> codon) of mRNA in the <u>P-site (in middle)</u> of ribosome.

يوجد في اليوتيوب فيديوهات خاصة لهذه الجزئية بالذات ننصح بمشاهدتها

1) Chain Initiation: The complex forms of combination of ribosome, mRNA and tRNA together. The first tRNA binds to AUG (start codon) of mRNA in the P-site of ribosome


A-site tRNA carries the growing protein chain and moves to P-site (translocation)

3) chain Termination: mRNA contains stop codons (UAA, UAG, UGA)


When ribosomes reads any stops codon, translation is terminated This releases the new protein chain

WAUG UUU AAG-

BIQCHEMISTRY TEAM

وفقنا الله وإياكم