

### **Glucose Metabolism: Gluconeogenesis**



**Reem M. Sallam, MD, PhD** 

Assistant Prof. & Consultant, Medical Biochemistry Unit, Pathology Dept., College of Medicine, KSU sallam@ksu.edu.sa

# **Objectives**

- The importance of gluconeogenesis as an important pathway for glucose production
- > The main reactions of gluconeogenesis
- > The rate-limiting enzymes of gluconeogenesis
- Gluconeogensis is an energy-consuming, anabolic pathway

### **Gluconeogenesis: An Overview**

- Liver (mainly) and Kidneys
- Both mitochondria and Cytosol Exception: Glycerol, only cytosol
- Gluconeogenic substrates:
  - Glycerol Lactate and Pyruvate Glucogenic amino acids

#### **Gluconeogenic Pathway**



Transport of OAA & decarboxylation into PEP

## **Gluconeogenic Substrates:** Glycerol

Glycerol



#### NAD+ NADH

Dihydroxyacetone phosphate Glucose ← **\*GK:** Glycerol kinase only in liver & kidneys

#### **Glucogenic Amino Acids**





### Gluconeogenic Substrates: Lactate (Cori Cycle)



#### **Gluconeogenic Pathway**

into PEP



### **Pruvate Carboxylase and PEP-CK**



<u>Pyruvate carboxylase + PEP-CK ≠ Pyruvate kinase</u>

#### **Regulation of Pruvate Carboxylase**



Fasting  $\rightarrow \uparrow$  lipolysis in adipose tissue  $\rightarrow \uparrow$  FFA to liver  $\rightarrow$  FA oxidation  $\rightarrow \uparrow$  Acetyl CoA  $\rightarrow$  allosteric activation of pyruvate carboxylase to increase the Gluconeogensis rate

#### Fructose 1,6-Bisphosphatase



#### **Glucose 6-Phosphatase**



Glucose 6-phosphatase ≠ Glucokinase

## Gluconeogensis: Energy Consumed

Six High-Energy Phosphate Bonds From Pyruvate to Glucose

![](_page_14_Figure_2.jpeg)

### **Gluconeogenesis: Regulation**

- Reciprocal control Gluconeogenesis & Glycolysis
- Allosteric:

 $\uparrow Acetyl CoA \rightarrow stimulates Pyruvate carboxylase$ 

↓ **AMP or** ↑ **ATP** (*i.e. energy-rich state in cells*)

↓ F 2,6-Bisphosphate

► → Stimulate F 1,6-bisphosphatase

 ↑Glucagon (or ↓ I/G ratio): stimulates gluconeogenesis

Allosteric (glucagon → ↓ F 2,6-Bisphosphate) Induction (glucagon → induction of PEP-CK gene)

### **Take Home Message**

- Gluconeogenesis:
  - Synthesis of glucose from noncarbohydrates
  - •Anabolic
  - •Energy-consuming
- 4 Unique enzymes are required for reversal of the 3 irreversible reactions of glycolysis
- Both gluconeogenesis & glycolysis are reciprocally-regulated