pharmacology bysuge

By:. Team of pharmacology

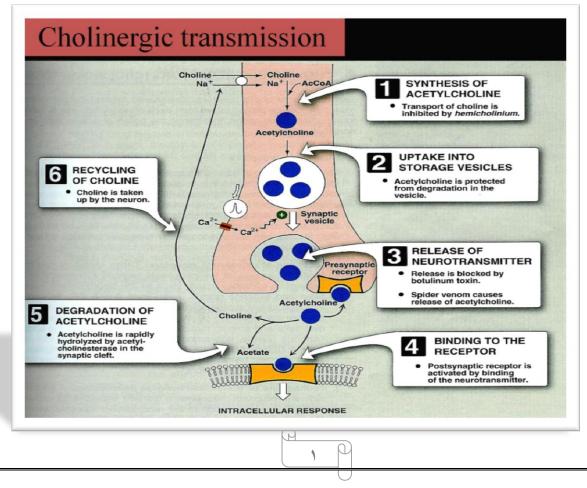
Q

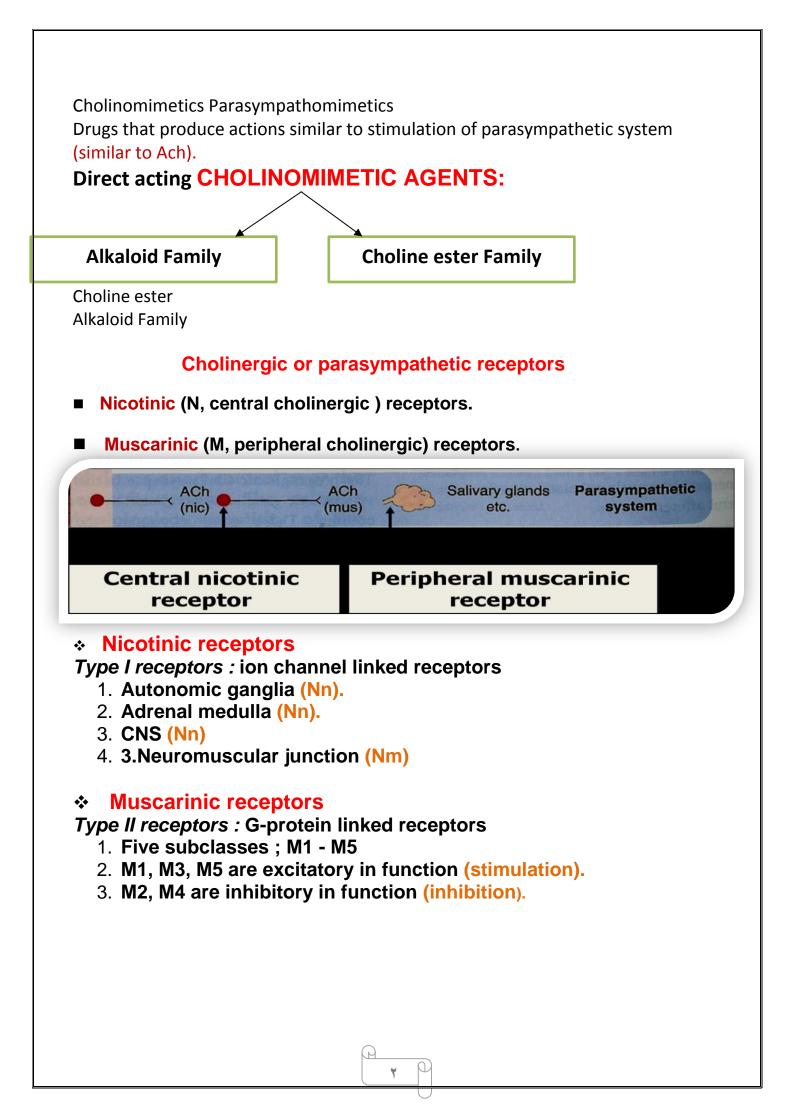
***CHOLINOMIMETIC AGENTS:**

How should we study the cholinomimetic agents?

To study these agents we should understand the mechanism of Ach action and how the action is differing according to the type of the receptor it acts upon.

The Cholinomimetic agents are drug that either work by itself on the Muscarinic receptor (Direct) or they facilitate the chance for Ach to work upon both receptors (Indirect).


Both are doing the same action through the similarity between the direct acting and Ach or by action of Ach itself by the indirect acting.


*** Important note:

1-The Direct acting drugs all are working on Muscarinic receptors by doing the same action of Ach on these receptors.

2-The Indirect acting drugs all are allowing Ach to work on both receptors (Nicotinic; Muscarinic).

Neurotransmitter in parasympathetic or cholinergic system is acetylcholine and nerves are cholinergic

They are group of drugs acting on Muscarinic receptors to perform the same function of Ach but with longer duration and more selective to muscarinic receptors.
 *Muscarinic Receptors:
 Muscarinic Receptors are G-Protein Coupled Receptors.
 Increase Ca amount in the cell
 M1 & M3 Ach receptors couple to Gq to stimulate PLC.
 M2 & M4 Ach receptors couple to Gi to inhibit AC.
 Increase cAMP so decrease ATP so no more contracton in the cell and opening for

Muscarinic receptors

Decrease cAMP so decrease ATP so no more contracton in the ceel and opening for

Receptor	Locations	Pharmacological actions	
M1 (Neural) Excitatory	CNS gastric parietal cells	CNS excitation Gastric acid secretion	
M2 (Cardiac) Inhibitory	Heart	Cardiac inhibition	
M3 Glandular Excitatory	Exocrine glands Smooth muscles Vascular endothelium	 Secretion of glands Smooth muscle contraction Vasodilatation (via nitric oxide) 	

** Comparison between Nicotinic (central) and Muscarinic (peripheral):				
Nicotinic receptors	Muscarinic receptors			
Central cholinoceptor	Peripheral cholinoceptor			
Ion channel linked receptors	G protein linked receptors			
Autonomic ganglia (sympathetic & parasympathetic) stimulation (Nn)	On all peripheral organs that receive postganglionic parasympathetic fibers			
Adrenal medulla (Nn)	Heart (M2) inhibition			
release of catecholamines	exocrine glands (M3)			
(Adrenaline & Noradrenaline)	contraction			
Skeletal muscle (Neuromuscular junction) <i>(Nm) Contraction</i>	Smooth muscles (<i>GIT,</i> <i>urinary tract, bronchial</i> <i>muscles)</i> (M3) contraction			
Almost excitatory	Excitatory or			

**Based on the receptor type, Acetylcholine has two main effects:

• 1) Cholinergic (cholinomimetics) action(muscarinic).

• 2) Nicotinic Action

1-Nicotinic action:

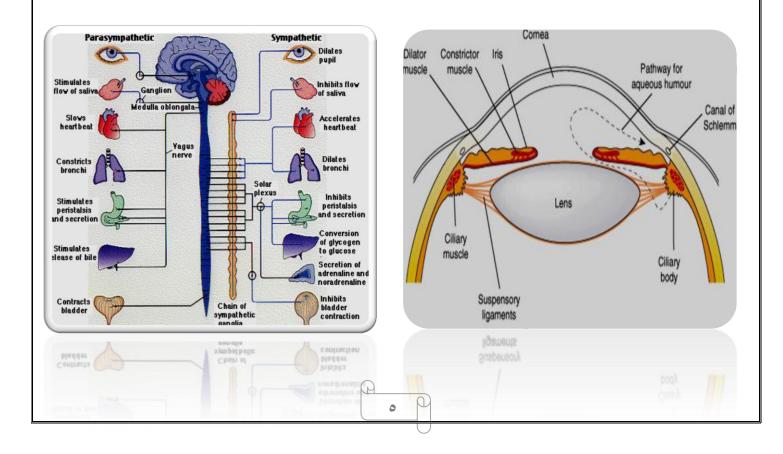
Skeletal muscles:

 $\blacktriangleright \quad Low conc. \rightarrow muscle \ contraction$

 \blacktriangleright High conc. \rightarrow persistent depolarization & paralysis. Through continuous depolarization.

Ganglia: stimulation of sympathetic& parasympathetic ganglia. **Adrenal medulla:** release of catecholamines

(h)


٤

(Adrenaline & Nor Adrenaline).

Note: They are continuation of the physiological effects of ACH. المستقبل على Ach بفعل يحصل لما مشابه هو الأدوية هذه عمل

Muscarinic actions			
Organs	Cholinergic actions		
Еуе	Contraction of circular muscle of iris (miosis)(M3) Contraction of ciliary muscles for near vision (M3) Decrease in intraocular pressure		
Heart endothelium	bradycardia (heart rate) (M2) Release of NO (EDRF)		
Lung	Constriction of bronchial smooth muscles Increase bronchial secretion M3		
GIT	Increased motility (peristalsis) Increased secretion Relaxation of sphincter M3		
Urinary bladder	Contraction of muscles Relaxation of sphincter M3		
Exocrine glands	Increase of sweat, saliva, lacrimal, bronchial, intestinal secretions M3		

Direct cholinomimetics

- Acetylcholine (M,N)
- Carbachol (M,N)
- Bethanechol (M)
- Pilocarpine (M)
- 1. Acetylcholine (Ach)

Muscarinic and nicotinic agonist

Not used clinically because Ach

Is not selective (N, M)

Has short duration of action. Why?

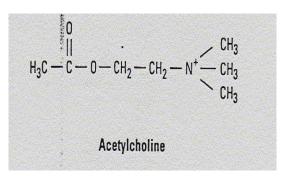
Degradation by acetycholinesterase

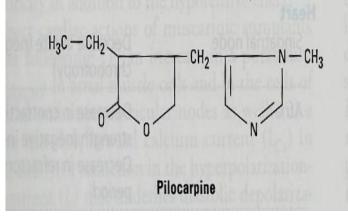
2. Pilocarpine

Natural alkaloids

Tertiary amine *lipophilic*

Pharmacokinetics


It is well absorbed


Good distribution

Can cross BBB (has central effects).

Long duration of action

Direct muscarinic agonist (mainly on eye & secretion)

3. Pilocarpine

Adverse effects:

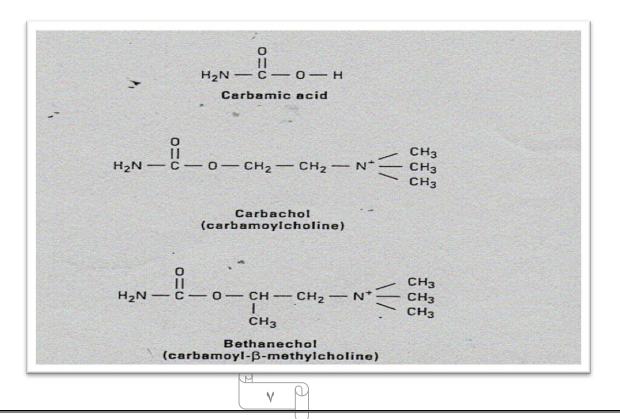
Profuse sweating

Salivation

CNS effects

Uses:

Xerostomia (dry mouth).


Drug of choice in emergency glaucoma

(open-angle & closed-angle) applied as eye drops

Synthetic choline esters

Bethanechol, Carbachol

- **Quaternary ammonium compounds (polar)**
- Poor distribution
- □ can not cross BBB (No CNS effects)
- □ Not metabolized by cholinesterase.
- □ Have longer duration of action than Ach.
- □ Never given I.V. or I.M *BUT* S.C.

Carbachol

- ✓ Orally-SC
- ✓ Not metabolized by cholinesterases.
- ✓ Longer duration of action than Ach
- ✓ Muscarinic actions on Eye, GIT, UT.
- ✓ Has nicotinic actions (*what are these actions?*).

Used for

- ✓ Mainly in glaucoma
- ✓ Urinary retention & paralytic ileus (rarely)

5. Bethanechol

- ✓ Orally-SC
- ✓ Prominent muscarinic actions on GIT, UT.
- ✓ No nicotinic action
- ✓ Not metabolized by cholinesterases.
- ✓ Longer duration of action than Ach

Used for

- In urinary retention (post-operative atony, neurogenic bladder, spinal cord injury)
- ✓ In paralytic ileus

**New Drugs:

Cevimeline:

- Direct acting cholinomimetics
- A muscarinic agonist, with particular effect on M3

• Used for treatment of dry mouth symptomassociated with

Sjogren's syndrome

receptors

- It is given orally.
- Increased salivation.

• Used for treatment of dry mouth symptom associated with Sjogren's syndrome.

٨

(h)

Contraindications of cholinomimetics

- Bronchial asthma.
- Peptic ulcer.
- Angina pectoris
- Incontinence

Intestinal obstruction
 **New Uses of Cholinergic Drugs:
 Donepezil: for improving memory (Cognitive Function) in Alzheimer disease. it is (Indirect acting)
 Cevimeline: dryness of the mouth caused by

Cevimeline: dryness of the mouth caused by radiation therapy for head and neck cancer and also indicated for dry eye.

	Ach	Carbachol	Bethanechol	Pilocarpine
Chemistry	Quaternary	Quaternary	Quaternary	Tertiary non
	Polar	Polar	Polar	polar
Absorption	Not	Better absorbed than Ach	Better	
			absorbed than	Complete
			Ach	
Metabolism	Hydrolyzed by cholinesterase	NOT hydrolyzed	NOT	NOT
		by	hydrolyzed by	hydrolyzed
		cholinesterase	cholinesterase	cholinesterase
Duration	Very short	Longer (++)	Longer (++)	Longer (++)
Administ	l.v.	Oral,	Oral,	Oral,
	eye drops	Eye drops s.c.	Eye drops s.c	eye drops

(h)

٩

	Ach	Carbachol	Bethanechol	Pilocarpine
Receptors	Muscarinic Nicotinic	Muscarinic Nicotinic	Muscarinic	Muscarinic
Muscarinic	+++	+++	+++	+++
Selectiity	NOT	Eye, GIT Urinary bladder	GIT Urinary Bladder	More on eye, secretion
Nicotinic	+++	+++	NO	NO
Uses	NO	Glaucoma Paralytic ileus Urinary Retention	Paralytic ileus Urinary Retention	Glaucoma Xerostomia

Some important notes:

- ✓ -ACH is important because it is controlling Norepinphrine
- ✓ -ACH is very dangerous while Norepinphrine not

Q

1.

 ✓ -All tertiary drug can go to barin while Quatertiary drug not.