Physiology Team 432

Gas Transfer (Diffusion of D_{2} and CD_{2})

DロNE BY:

Nourah Al-Ajmi - Saud Al-Sufian
REVIEWED BY:

Khulood AI-Raddadi \& Mohammad Jameel
1434-2013

OBJECTIVES

1-Define partial pressure of a gas, how is influenced by altitude.

2- Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law).

3- Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law).

4- Describe the factors that determine the concentration of a gas in a liquid.

5- Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).

6- Knew the various factors determining gas transfer: - Surface area, thickness, partial pressure difference, and diffusion coefficient of gas.

7- State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonarycapillary.
-partial pressure: pressure exerted by one of the gases in a mixture, for example the pressure of oxygen in the atmosphere, it is called partial pressure of oxygen (PO2), the oxygen is one of the mixture gases in the atmosphere).
-MmHg : millimeter of mercury, a pressure unit (atmospheric pressure= 760 mmHg .
-Diffusion of gases: transfer of gases from high concentration to low concentration.
-Respiratory membrane (Alveolar-capillary membrane) : alveolar epithelium , capillary endothelium and in between the interstitial tissue.
(Dr. Ashraf prefers the name alveolar-capillary membrane since it is more accurate.

Gas exchange through the respiratory membrane:

The alveoli are polyhedral in shape which increase the surface area for gas exchange in the lung ($50-100 \mathrm{~m}^{2}$)

From the picture we can see that O_{2} is decreased and CO_{2} is increased in the alveolar air because oxygen is consumed and Carbon dioxide is produced and when the remaining O_{2} is expired it increases; simply because alveolar oxygen is less than atmospheric oxygen and when mixing low oxygen gradient with rich oxygen gradient the low oxygen gradient become more.

At rest, RBCs remain in pulmonary capillaries for 0.75 s . This time is known as capillary transit time.

It becomes less during exercise and may be 0.25 s .
ventilation (inpiration of air)
diffeusion of gases from low to high
*The rate of diffusion of these gases is directly proportional tothe pressure caused by this gas alone which is called the partial pressureof the gas ,so partial pressure and diffusion are directly proportional *what cause the pressure ??
Pressure is caused by the constant impact of kinetically moving molecules against a surface

Factors affecting gas diffusion :

1. P: Partial pressure differences (directly proportional)
2. A: Surface area for gas exchange (directly proportional)
3. d: Diffusion distanceor membrane thickening (Inversely proportional)
4. MW: Molecular weight (Inversely proportional) and (S) solubility of gas (directly proportional).

$$
D \propto \frac{\Delta P \times A \times S}{d \times \sqrt{M W}}
$$

- O 2 has lower molecular weight than CO 2
- But CO 2 is 24 times more soluble than O 2
- Net result: CO2 diffusion approx 20 times faster than O2

Diffusion coefficient:

$\mathrm{S} / \sqrt{ } \mathrm{MW}$ is called the diffusion coefficient of the gas.
For $O x y g e n=1.0$ carbon dioxide $=20.0$ nitrogen= $=0.53$.
at the same pressure : different gases will diffuse according to their diffusion coefficient(directly proportional)
Diffusion coefficient \uparrow Diffusion

Diffusion capacity of the diffusion membrane:

(is the volume of gas that diffuses through themembrane each minute for a pressure difference of 1 mmHg).
**Unite of diffusion capacity: $\mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$

لو كان فرق الضغط بين غثائين (alveoli \& capillary) ثابت ويساوي
1 mmHg
من أحد الغشائيّن إلى الأخر ـ من التجارب وُجد أنها (21) $\mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$

Diffusing capacity for oxygen $21 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$:

- Even if the oxygen pressure difference across the respiratory membrane is $11 \mathrm{mmHg}--------11 \times 21=$ 230 ml oxygen diffusing through the membrane each minute>

The Carbon monoxide method for measuring diffusing capacity of Oxygen: (From Dr Ashraf)

Since measurement of diffusing capacity of oxygen directly is difficult due to imprecise measurement of PO_{2}, we use CO in small amount to measure it indirectly by using the formula:

And because CO combine with the hemoglobin so rapidly; that its pressure in capillaries doesn't have time to build up, the value of P_{2} equals to zero. So:

Vgas $=D L \times P_{1} \Rightarrow D L=\frac{V g a s}{P_{1}}=17 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$
And because diffusion coefficient of O is 1.23 times the diffusion coefficient of CO we multiply 17 by 1.23 to convert diffusion capacity of CO into Diffusion capacity of Oxygen which is $21 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$

Changes of diffusion capacity during exercise: $65 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$

This is due to:
1- increased number of open pulmonary capillaries which was dormant, thereby increasing the surface area for gas exchange.
2- increased alveolar ventilation
3 - During exercise the oxygen requirement increased 20 times, and cardiac output increased and so the time blood remained in the pulmonary capillaries becomes less than half normal despite the fact that additional capillaries open up But the blood is almost completely saturated withoxygen when it leaves the pulmonary capillaries

	$1 \mathrm{mmHg} \longrightarrow 21 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$	
	O_{2} Pressure difference	O_{2} Volume diffuse
During rest	1 mmHg	$21 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$
During exercise	1 mmHg	$65 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$

Chang in diffusion capacity of CO_{2} :

- it diffuses 20 times greater than oxygen due to greater Diffusion coefficient which is $\mathbf{2 0}$ times that for oxygen.
- Diffusion capacity for carbon dioxide $400 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$ (for O 2 it was 21 and multiplied by 20 because CO2 diffuse 20 times greater than O2).
- during exercise 1200 to $1300 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$

	CO_{2} Pressure difference	$\mathbf{C O}_{2}$ Volume diffuse
During rest	1 mmHg	$\left(21^{*} 20\right) \sim 400 \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$
During exercise	1 mmHg	$\left(65^{*} 20\right) 1200 \sim \mathrm{ml} / \mathrm{min} / \mathrm{mmHg}$

Reasons of these areas follow:

1-The diffusing capacity for oxygen increases almost three fold during exercise, this results mainly from increasing numbers of capillaries participating in the diffusion, and a more even V/Q (ventilation/perfusion or pulmonary blood flow) ratio all over the lung.

2- At rest the blood normally stays in the lung capillaries about three times (it was 21 ml and then 65 ml during exercise so we multiplied by 3) as long as necessary to cause full oxygenation. Therefore, even with shortened time of exposure in exercise, the blood is still fully oxygenated or nearly so.

Composition of inhaled air
$79 \%=$ nitrogen
$20 \%=0$ oxygen
trace $=$ carbon dioxide

Composition of exhaled air $79 \%=$ nitrogen
$16 \%=$ oxygen
$4 \%=$ carbon dioxide

Partial pressure ofO2 and CO2:

*Oxygen concentration in the atmosphere is 21% from total atmospheric c So $\mathrm{PO}_{2}\left(\right.$ partial pressure of O_{2}) in atmosphere $=760 \mathrm{mmHg}(x 21 \%=$ 160 mmHg .

- This mixes with "old" air already present in alveolus to arrive at PO2 of $\mathbf{1 0 4} \mathbf{~ m m H g}$ in alveoli.
*Carbon dioxide concentration in the atmosphere is 0.04% So PCO_{2} (partial pressure of CO2) in atmosphere $=760 \mathrm{mmHg} \times 0.04 \%=$ $\mathbf{0 . 3} \mathrm{mm} \mathrm{Hg}$
- This mixes with high CO 2 levels from residual volume in the alveoli to arrive at PCO2 of $\underline{\mathbf{4 0} \mathbf{~ m m H g}}$ in the alveoli.

PO2 in atmosphere 160 once it enter the body it decrease to $104,,, \mathrm{PCO} 2$ in atmosphere 0.3 once it enter the body it increase to 40

Partial pressure of gases in inspired air and alveolar:

O2 decrease due to the normal physiological shunt: the arterial blood mix with venous blood which come from bronchial tree and cardiac muscle

$\mathrm{PO}_{2}, \mathrm{PCO}_{2}$ in air, lung and tissue:

Figure 35-1.

Copyright © 2006 by The McGraw-Hill Companies, Inc. All rights reserved.
Summary of PO_{2} and PCO_{2} values in air, lungs, blood, and tissues, graphed to emphasize the fact that both O_{2} and CO_{2} diffuse "downhill" along gradients of decreasing partial pressure. (Redrawn and reproduced, with permission, from Kinney JM: Transport of carbon dioxide in blood. Anesthesiology 1960;21:615.)

$\mathrm{PO}_{2}, \mathrm{PCO}_{2}$ in various portion of normal expired air:

FIGURE 3.9-6
Oxygen and carbon dioxide partial pressures in the various portions of normal expired air.

- At resting condition 250 ml of oxygen enter the pulmonary capillaries/min at ventilatory rate of $4.2 \mathrm{~L} /$ min.or $4200 \mathrm{ml} / \mathrm{min}$.
- During exercise is absorbed by the pulmonary capillaries per 1000 ml of oxygen minute, the rate of alveolar ventilation must increase four times to maintain the alveolar PO 2 at the normal value of 104 mmHg .

- Normal rate of carbon dioxide excretion is $200 \mathrm{ml} / \mathrm{min}$, at normal rate of alveolar ventilation of $4.2 \mathrm{~L} / \mathrm{min}$.

GOOD LUCK

