Physiology Team 432

Dxygen and Carbon diaxide Transport

DロNE BY:

Sara Habis - Nojaim Al-Nojaim
REVIEWED BY:

Khulood Al-Raddadi \& Mohammad Jameel
1434-2013

Oxygen and Carbon dioxide Transport

Objectives:

1. Understand the forms of oxygen transport in the blood, the importance of each.
2. Differentiate between O 2 capacity, O 2 content, and O 2 saturation.
3. Describe (oxygen-hemoglobin dissociation curve).
4. Define the P50 and its significance.
5. How DPG, temperature, $\mathrm{H}+$ ions and PCO 2 affect affinity of O 2 for Hemoglobin and the physiological importance of these effects.
6. Describe the three forms of carbon dioxide that are transported in the blood, and the chloride shift.

Forms of O_{2} Transport

* When $\mathrm{PO}_{2}=100 \mathrm{mmHg}$
* For each 100 ml of blood

Hemoglobin Molecule
Hemoglobin has 4 groups of
Heme , each one can carry one Oxygen molecule.

If Hb carried 4 molecules of
Oxygen then it is fully saturated

PO2 affects:

1-the $\mathrm{Hb}-\mathrm{Oxygen}$ binding :

- If PO_{2} increases Hb bind O_{2}
- If PO 2 decreases Hb release O_{2}

2-the saturation level in a relation called :
" Oxyhemoglobin Saturation Curve" :

- Higher PO2 results in greater Hb saturation
- S-shaped curve or sigmoid.
O_{2} binding capacity: maximum amount of O_{2} bound to hemoglobin ($\mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood) measured at 100% saturation. Saturation: \% of heme groups bound to O 2 "how many Hb is saturated"

$$
\text { Saturation of } H B=100 \times \frac{\text { O2 Content }}{\text { Oxygen Binding Capacity }}
$$

* O2 content :

- It is the amount of Oxygen in blood ($\mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ Blood)
- Differs from person to another, depending on the amount of Hb each person has and Hb saturation.
- To measure it :

In arterial blood we need to know how many gram of Hb is in 100 ml of blood (normal=13-18g).
When the saturation is 100% :

$$
15 \mathrm{~g} \mathrm{Hb} * 1.34=20 \mathrm{ml} \mathrm{O} 2
$$

" 1.34 is a constant of the amount of oxygen that 1 g Hb can carry" But if Hb is not fully saturated, e.g. if it is 97% :

$$
\left(15 \mathrm{~g} \mathrm{Hb}^{*} 97 / 100\right) * 1.34=19.4 \mathrm{ml} \mathrm{O}_{2}
$$

In venous blood we must take out the amount of oxygen released from hemoglobin to the tissues which is:

- at rest 25% or $5 \mathrm{ml} \mathrm{O}_{2}$ per each 100 ml blood. "Constant" So the O 2 content $=$
19.4-5 = 14.4 ml O2/100ml blood
- During strenuous exercise, the oxygen uptake to the tissue increase three folds so $15 \mathrm{ml} \mathrm{O}_{2}$ is given $/ 100 \mathrm{ml}$ blood.
Which makes the O_{2} content $=$ $19.4-15=4.4 \mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood.
- At rest , tissues consume $250 \mathrm{ml} \mathrm{O}_{2}$ / min and produce 200 ml CO2 " 5000 ml blood".

* Oxyhemoglobin Dissociation Curve

A curve which shows the relation between PO_{2} and $\mathrm{Hb}-\mathrm{O} 2$ and O 2 content

- The position of it can be determined by Measuring the P50 P50 : is arterial PO_{2} at which 50% of the Hb is saturated with O2, Normally P50 = $\mathbf{2 6 . 5}$ or 27.

Left shifted curve :
Right shifted curve :

\downarrow P50 \uparrow affinity of Hb to O2	\uparrow P50 $\quad \downarrow$ affinity of Hb to O2
- easy binding "loading"	- hard binding "loading"
- hard releasing "unloading"	- easy releasing "unloading"
- in fetal Hb	- during exercise
$\downarrow(\mathrm{H}+$, temperature,	\uparrow (H+, temperature,
PCO2, 2-3DPG)	PCO2, 2-3DPG)
$\uparrow \mathrm{pH}$	$\downarrow \mathrm{pH}$

- 2,3DPG:

- It is synthesized in RBCs from the glycolytic pathway.
- Binds tightly to reduce Hb .
- Increases in the RBCs in anemia and hypoxemia to maintain tissue oxygenation cause its increased facilitates the oxygen rlease.

Utilization coefficient:

The percentage of the blood that gives up its oxygen as it passes through the tissues capillaries.
$=\underline{\mathrm{O}_{2} \text { delivered to the tissue }}$
O_{2} content of arterial blood

- Normally at rest $=5 \mathrm{ml} / 20 \mathrm{ml}=25 \%$
- During exercise $=15 \mathrm{ml} / 20 \mathrm{ml}=75 \%-85 \%$

Bohr Effect: the effect of carbon dioxide and hydrogen ions on the curve.

At lung:

- The movement of CO_{2} from blood to alveoli will decrease blood CO \& $\mathrm{H}+$ and increase O_{2} affinity to Hb , that will shift

At tissues :

- The movement of CO_{2} from tissues to blood will increase blood $\mathrm{CO}_{2} \& \mathrm{H}+$ and decrease O_{2} affinity to Hb , that will shift the curve to right.

Dissolved O_{2} : unbound O_{2} in blood ($\mathrm{ml} \mathrm{O}_{2} / 100 \mathrm{ml}$ blood)

- It is mainly responsible for creating Partial Pressure of O2 (PO_{2})
- At arterial blood/100 $\mathbf{m l}: \mathrm{PO}_{2}=95 \mathrm{mmHg} \rightarrow 0.29 \mathrm{ml} \mathrm{O} 2$ is dissolved. 0.17 ml of it transported to tissues
- At venous blood/ $100 \mathrm{ml}: \mathrm{PO} 2=40 \mathrm{mmHg} \rightarrow 0.12 \mathrm{ml} \mathrm{O} 2$ remain dissolved.

Displacement of O_{2} by Carbon monoxide:

The affinity of Hb to Co is very high, Co can binds with Hb about 250 times as O2, Which causes left shift of the O2-Hb curve.

- Each 100 ml of blood carries 4 ml CO2 from the tissue and gives 5 ml 02 per min.

- Formation of Bicarbonate :

A- In the systemic capillaries:

1- Carbon dioxide produced in the tissue cells diffuses into the blood plasma. The largest fraction of carbon dioxide diffuses into the red blood cells.

The formation of bicarbonate ions, $\left(\mathrm{HCO}_{3}{ }^{-}\right)$takes place by the following reactions:
2- Hydration of $\mathrm{CO}_{2}: \mathrm{CO}_{2}+\mathrm{HOH}===\mathrm{H}_{2} \mathrm{CO}_{3}$
3- Dissociation of $\mathrm{H}_{2} \mathrm{CO}_{3}: \mathrm{H}_{2} \mathrm{CO}_{3}===\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$

* The $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}{ }^{-}$combination acts as the primary buffer of the blood.

4- Bicarbonate diffuses out of the red blood cells into the plasma in venous blood and Chloride ion always diffuses in an opposite
direction of bicarbonate ion in order to maintain a charge balance. This is referred to as the "chloride shift".

(a) In body tissue

B- In the pulmonary capillaries:

1- Bicarbonate diffuses into the red blood cells and Chloride ion diffuses out "chloride shift".

The reformation of CO2 in step 2 \& 3

4- Carbon dioxide produced in RBC diffuses into the blood plasma. Then to the alveoli.

(b) In the lungs

* The Haldane effect :

- When O 2 binds with $\mathrm{HB}, \mathrm{CO} 2$ released
- This binding causes Hb to become stronger acid and this in turn displaces CO2 from blood into alveoli.

* Respiratory Exchange rate Ratio " quotient"

The ratio between the amount of CO_{2} exhaled and O_{2} inhaled in one breath.

$$
R=\frac{\text { rate of CO2 output }}{\text { rate of } 02 \text { uptake }}
$$

- Normally $=4 / 5=82 \%$ or 0.82
- In a carbohydrate diet $\mathrm{R}=1$, cause each O_{2} molecule used in carbohydrate metabolism produce 1 molecule of CO_{2}

When fats only is used $\mathrm{R}=0.7$

