

Physiology Team 432

Oxygen and Carbon dioxide Transport

DONE BY:

Sara Habis - Nojaim Al-Nojaim

REVIEWED BY:

Khulood Al-Raddadi & Mohammad Jameel

1434-2013

Oxygen and Carbon dioxide Transport

Objectives:

- 1. Understand the forms of oxygen transport in the blood, the importance of each.
- 2. Differentiate between O2 capacity, O2 content, and O2 saturation.
- 3. Describe (oxygen-hemoglobin dissociation curve).
- 4. Define the P50 and its significance.
- 5. How DPG, temperature, H+ ions and PCO2 affect affinity of O2 for Hemoglobin and the physiological importance of these effects.
- 6. Describe the three forms of carbon dioxide that are transported in the blood, and the chloride shift.

- ✤ O2 binding capacity: maximum amount of O2 bound to hemoglobin (ml O2/100ml blood) measured at 100% saturation.
- Saturation: % of heme groups bound to O2 "how many Hb is saturated"

Saturation of $HB = 100 \times \frac{O2 \ Content}{Oxygen Binding Capacity}$

✤ O₂ content :

- It is the amount of Oxygen in blood (ml O₂/100 ml Blood)
- Differs from person to another, depending on the amount of Hb each person has and Hb saturation.
- To measure it :

In **arterial blood** we need to know how many gram of Hb is in 100ml of blood (normal=13-18g).

When the saturation is 100%:

15g Hb * 1.34 = 20 ml O2

"1.34 is a constant of the amount of oxygen that 1g Hb can carry" But if Hb is not fully saturated, e.g. if it is 97%:

(15g Hb*97/100) * 1.34 = 19.4 ml O₂

In **venous blood** we must take out the amount of oxygen released from hemoglobin to the tissues which is:

<u>at rest</u> 25% or 5ml O₂ per each 100ml blood. "Constant"
 So the O₂ content =

19.4 - 5 = 14.4 ml O₂/100ml blood

 <u>During strenuous exercise</u>, the oxygen uptake to the tissue increase three folds so 15ml O₂ is given/100ml blood.

Which makes the O2 content =

19.4 - 15 = 4.4ml O₂/100ml blood.

 At rest, tissues consume 250ml O₂/min and produce 200ml CO₂ "5000ml blood".

Oxyhemoglobin Dissociation Curve

- A curve which shows the relation between PO₂ and Hb-O₂ and O₂ content
- The position of it can be determined by <u>Measuring the P50</u>
 P50 : is <u>arterial</u> PO2 at which 50% of the Hb is saturated with O2, Normally P50 = 26.5 or 27.

Left shifted curve :	Right shifted curve :
↓P50 ↑affinity of Hb to O2	↑P50 ↓affinity of Hb to O2
 easy binding "loading" 	 hard binding "loading"
 hard releasing "unloading" 	 easy releasing "unloading"
- in fetal Hb	- during exercise
\downarrow (H+, temperature,	↑ (H+, temperature,
PCO2, 2-3DPG)	PCO2, 2-3DPG)
↑рН	↓pH

• 2,3DPG:

- It is synthesized in RBCs from the glycolytic pathway.
- Binds tightly to reduce Hb.
- Increases in the RBCs in anemia and hypoxemia to maintain tissue oxygenation cause its increased facilitates the oxygen rlease.

Utilization coefficient:

The percentage of the blood that gives up its oxygen as it passes through the tissues capillaries.

=<u>O2 delivered to the tissue</u> O2 content of arterial blood

- Normally at rest = 5ml/20ml = 25%
- During exercise = 15ml/20ml = 75%-85%

Sohr Effect: the effect of carbon dioxide and hydrogen ions on the curve.

At lung:

 The movement of CO₂ from blood to alveoli will decrease blood CO[•] & H+ and increase O₂ affinity to Hb , that will shift the curve to left "allow more O₂ transport to tissues"

At tissues :

 The movement of CO₂ from tissues to blood will increase blood CO₂ & H+ and decrease O₂ affinity to Hb, that will shift the curve to right.

Dissolved O2: unbound O2 in blood (ml O2/100ml blood)

- It is mainly responsible for creating Partial Pressure of O2 (PO2)
- At arterial blood/100 ml : PO2 = 95mmHg → 0.29ml O2 is dissolved. 0.17ml of it <u>transported</u> to tissues

 CO^2

 CO^2

- At venous blood/100ml : PO2 =40mmHg \rightarrow 0.12ml O2 remain dissolved.

Displacement of O2 by Carbon monoxide:

The affinity of Hb to Co is very high, Co can binds with Hb about 250 times as O₂, Which causes left shift of the O₂-Hb curve.

- Each 100ml of blood carries 4ml CO2 from the tissue and gives 5ml O2 per min.
- Formation of Bicarbonate :

A- In the systemic capillaries:

1- Carbon dioxide produced in the tissue cells diffuses into the blood plasma. The largest fraction of carbon dioxide diffuses into the red blood cells.

The formation of bicarbonate ions, (HCO_3^-) takes place by the following reactions:

- 2- Hydration of CO_2 : $CO_2 + HOH === H_2CO_3$
- 3- Dissociation of H_2CO_3 : $H_2CO_3 == H^+ + HCO_3^-$ * The H_2CO_3/HCO_3^- combination acts as the primary buffer of the blood.
- 4- Bicarbonate diffuses out of the red blood cells into the plasma in venous blood and Chloride ion always diffuses in an opposite

direction of bicarbonate ion in order to maintain a charge balance. This is referred to as the "chloride shift".

B- In the pulmonary capillaries:

1- Bicarbonate diffuses into the red blood cells and Chloride ion diffuses out "chloride shift".

The reformation of CO2 in step 2 & 3

4- Carbon dioxide produced in RBC diffuses into the blood plasma. Then to the alveoli.

- The Haldane effect :
- When O2 binds with HB, CO2 released
- This binding causes Hb to become stronger acid and this in turn displaces CO2 from blood into alveoli.

Respiratory Exchange rate Ratio " quotient"

The ratio between the amount of CO₂ exhaled and O₂ inhaled in one breath.

$$R = \frac{rate \ of \ CO2 \ output}{rate \ of \ O2 \ uptake}$$

- Normally = 4/5 = 82% or 0.82
- In a carbohydrate diet R=1, cause each O₂ molecule used in carbohydrate metabolism produce 1 molecule of CO₂

When fats only is used R=0.7