

Globular proteins

Done by; Raghad al-mutlaqLYaraalsalloum

review by : Saleh Alhydar L Abdullah Alanazi

Globular Proteins

Amino acid chains fold into spheres. This type of folding increases solubility of proteins in water. Polar groups on the protein's surface, Hydrophobic groups in the interior, Fibrous proteins are mainly insoluble structural proteins(such as

hemoglobin	Most common globular protein, oxygen • transport function
Myoglobin	: oxygen storage/supply function in heart • and muscle
$\alpha_1, \alpha_2, \beta$ -globulins	various functions •
γ-globulins	(immunoglobulins): immune function •
Enzymes	(Most of the enzymes are globular protein , • catalysis of biochemical reactions

<u>Hemoglobin :</u>

globin	HbA (97%)	HbA= 2a + 2b	 When hemoglobin doesn't carry O₂ the bond between dimmers is stronger and the structure is taut. When hemoglobin carries O₂ the bond between dimmers is weaker and the structure is more relaxed. helping in O₂ exchange in tissue. Carries O₂ from the lungs to tissues& CO₂ from tissues back to the lungs Normal level (g/dL): Males: 14-16 Females: 13-15
Normal Hemog	HbA2 (2%)	HbA ₂ = 2a + 2d(delta)	Appears ~12 weeks after birth Constitutes ~2% of total Hb Composed of two a and two d globin chains
	HbF (1%)	HbF= 2a+2g	Major hemoglobin found in the fetus and newborn Tetramer with two a and two g chains Higher affinity for O2 than HbA Transfers O2 from maternal to fetal circulation across placenta
Abnormal : Unable to transport O ₂	HbA1c	HbA _{1c} = HbA+glucose (glycosylated hemoglobin) if high it is abnormal	HbA undergoes non-enzymatic glycosylation (Glucose binds with Hb). Glycosylation depends on plasma glucose levels HbA1c levels are high in patients with diabetes mellitus.
	CarboxyHb	high in smokers	CO replaces O_2 and binds 200X tighter than O_2 (in smokers
	Met Hb	has highly oxidized iron	Contains oxidized Fe^{3+} (~2%) that cannot carry O_2
	SulfHb	Contains high sulfur level	Forms due to high sulfur levels in blood (irreversible reaction

Hemoglobinopathies

Disorders of hemoglobin caused by:

Caused by Sickle cell (HbS) disease The mutar The shape anemia.		Caused by Glutamic a The mutar The shape anemia.	y a single mutation in β-globin gene acid at position 6 in HbA is replaced by valine. nt HbS contains $β^s$ chain a of RBCs become sickled Causes sickle cell	
Hemoglobin C		Caused by a single mutation in b-globin gene		
disease:		Causes a mild form of hemolytic anemia.		
Methemoglobin emia:		Caused by oxidation of Hb to ferric (Fe ³⁺) state Methemoglobin cannot bind oxygen Caused by certain drugs, reactive oxygen species and NADH-cytochrome b5 reductase deficiency Chocolate cyanosis: brownish-blue color of the skin and blood		
Defective synthesis of either a or b-globin chain due to	a-thalassemia:		Synthesis of a-globin chain is decreased or absent Causes mild to moderate hemolytic anemia	
	b-thalassemia:		Synthesis of b-globin chain is decreased or absent	
gene mutation			Causes severe anemia Patients need regular blood transfusions	

Myoglobin

Globular protein. Stores and supplies oxygen in heart & muscles (during aerobic exercise)

single polypeptide chain forming a subunit with 8 a-helixes. gives red color to skeletal muscles. The heme group exist at the center of the molecule

Myoglobin Diseases

Myoglobinuria: Myoglobin is excreted in urinedue to muscle damage (rhabdomyolysis). May causeacute renal failure

Specificmarker for muscle injury

Lessspecific marker for heart attack

<u>Immunoglobulins</u>

Defensive proteins produced by the B-cells of the immune system Y-shaped structure with 2 heavy and 2 light polypeptide chains Neutralize bacteria and viruses Types: IgA, IgD, IgE, IgG, IgM

Questions :

- 1: which of the following is the function of Hemoglobin :
- a : immune function .
- b : oxygen transport function .
- c : various function.

> B <

2 : Hemoglobin composed of four polypeptide and contain dimmers.

a: two

b: four c: six > A <

3 : A hemoglobin molecular contain :

a : 4 heme groups and carries 4 molecules of O_2

b: 4 heme groups and carries 2 molecules of O_2

c: 2 heme groups and carries 4 molecules of O_2

> A <

4 : which one of the following is Major hemoglobin found in the fetus and newborn

- a : HB fetal
- b: HB A

c : HB A1c

> A <

5 : gives red color to skeletal muscles.

a : hemoglobin

b: myoglobin

c : immunoglobin

> B <