**Biochemstry Team** 

If U find any mistake, plz contact us: <u>Biochemistryteam@gmail.com</u>



# **Oxidative stress**

Bone by:
Saleh Alhaidar
> Abdullah Alanazi
Reviewed by:
> Najoud AlOtaibi

**Blue:** 

**Explain** 

Red:

Imp

Objective: Not be given

Green: addition notes



### **Oxidative stress**

A condition in which cells are subjected to excessive levels of Reactive Species (Oxygen or Nitrative species) & they are unable to counterbalance their deleterious effects with antioxidants.

\*Some people does not affected due to natural antioxic

\*the oxidant will

lipid to free radical

convert

to fatty acid

unsaturated

It has been implicated in the ageing process & in many diseases (e.g., atherosclerosis and coronary heart diseases).

#### **Oxidative damage to:**

DNA Proteins Lipids (unsaturated fatty acids) e.g. poly unsaturated fatty acids

#### **Oxidative stress and diseases:**

- Inflammatory conditions e.g., Rheumatoid arthritis
- Athersclerosis and coronary heart diseases
- Obesity
- Cancers
- G6PD deficiency hemolytic anemia which common in Saudi Arabia.



السلايد اللي بعده راح تكون الصورة اوضح بالنسبة للـ Mechanisms

> هذا السلايد واللي بعده التسجيل مهم من الدقيقة ٢٤-٢٩

### **Reactive Oxygen Species (ROS)**



| Reactive Oxygen Species (ROS) |                                                                                                                                                                                                                                                                                                                                                            | Antioxidant        |                                                                                                                                                                   |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Types:                        | Free radical:<br>Superoxide $(O_2^{\cdot})$<br>Hydroxyl radical (OH·)<br>Peroxyl radical (ROO·) ( is the<br>free radical derivate from fatty<br>acid )                                                                                                                                                                                                     | Enzymes:           | <ul> <li>Superoxide<br/>dismutase</li> <li>Catalase</li> <li>Glutathione system<br/>(glutathione, NADPH,<br/>reductase, peroxidase &amp;<br/>selenium)</li> </ul> |
|                               | <b>Non free radical:</b><br>Hydrogen peroxide (H <sub>2</sub> O <sub>2</sub> )                                                                                                                                                                                                                                                                             | Vitamins:          | <ul> <li>Vitamin C (ascorbic acid)</li> <li>Vitamin A and β-carotenes</li> <li>Vitamin E</li> </ul>                                                               |
| Sources:                      | <ul> <li>During course of metabolism</li> <li>e.g.,</li> <li>O<sub>2</sub> · by auto-oxidation of</li> <li>hemoglobin and xanthine oxidase</li> <li>OH · by Fenton reaction</li> <li>O<sub>2</sub> · , H<sub>2</sub>O<sub>2</sub> , OH · By partial reduction</li> <li>of molecular oxygen in electron</li> <li>transport chain in mitochondria</li> </ul> | elements<br>Trace: | Selenium<br>Vit c : water soluble.<br>Vit A &E : fat soluble                                                                                                      |
|                               | Ingestion of toxins, chemicals or drugs                                                                                                                                                                                                                                                                                                                    |                    |                                                                                                                                                                   |



### Molecular & Vascular Effects of ROS

| Molecular effects                                                                          | Vascular effects                        |
|--------------------------------------------------------------------------------------------|-----------------------------------------|
| Lipid peroxidation<br>(polyunsaturated fatty<br>acids)                                     | Altered vascular tone                   |
| Protein denaturation                                                                       | Increased endothelial cell permeability |
| Inactivation of enzymes                                                                    |                                         |
| DNA damage                                                                                 |                                         |
| Cell signaling effects<br>(e.g., release of Ca <sup>2+</sup> from<br>intracellular stores) |                                         |
| Cytoskeletal damage                                                                        |                                         |
| Chemotaxis                                                                                 |                                         |

#### Biochemical Basis of G6PD Deficiency Hemolytic Anemia







### Nitric Oxide (NO)

| NO:                                     | Synthesis:               | Effects:                                                                                   |  |  |
|-----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------|--|--|
| Free radical gas                        | Enzyme:<br>No synthase   | Relaxes vascular smooth muscle                                                             |  |  |
| Very short half-life<br>(seconds)       | Precursor:<br>L-Arginine | Prevents platelet aggregation                                                              |  |  |
| Metabolized into<br>nitrates & nitrites |                          | Bactricidal &<br>Tumoricidal effects<br>"as a defensive<br>mechanism against<br>infection" |  |  |
|                                         |                          | Neurotransmitter in brain                                                                  |  |  |
|                                         |                          |                                                                                            |  |  |

### **Oxidative Stress: Role of Nitric Oxide (NO)**

Detrimental

Inducible: In normal condition

it's very low level but when ever there is

trigger e.g,

inflammation the level increas

- This may be both beneficial and <u>so, NO produced by</u>
   This may be both upon when and <u>1- Endothelial NOS</u> where NO is released
- Endothelial NOS. 2-Neuronal NOS. 3-Inducible NOS. Detrimen NO produced by endothelial NOS (eNOS)  $\rightarrow$  improving vascular dilation and perfusion (i.e., beneficial).

Vasodilators such as nitroglycerin is metabolized into NO and causes vasodilatation

- In contrast, NO production by neuronal NOS (nNOS) or by the inducible form of NOS (iNOS) has been reported to have detrimental effects.
- Increased iNOS activity is generally associated with inflammatory processes

### Pathogenesis of Atherosclerosis

هذا السلايد

- Modified (oxidized) LDL ... Oxidative stress (imbalance between oxidants and antioxidants)
   ( the oxidase part could be the Abo-protein or fatty acid in LDL )
- Endothelial injury of arterial wall
- Adherence of monocytes to endothelial cells and their movement into intima where it becomes macrophages
- Uptake of oxLDL by macrophage scavenger receptor: Scavenger receptor class A (SR-A) Low-affinity, non-specific receptor Un-regulated receptor
- Foam cell transformation: Accumulation of excess lipids inside the cells (unregulated receptor)
- Atherosclerotic plaque formation

#### **Athersclerotic plaque Formation**

#### **LDL: Receptor Mediated Endocytosis**



## Review MCQs :)

Q1) Which of these Nitric Oxide Synthase (NOS) forms is Beneficial to the Body: A- Endothelial NOS. B- Neuronal NO.S. C- Inducible NOS.

Q2) One of the pathogensis of atherosclerosis is:A- Normal LDLB- modified LDL (oxidized LDL)C- healthy vessel wall

Q3) Which of these ROS is a result of Fenton Reaction:

A- Superoxide (O2') B- Hydroxyl radical (OH') C- Hydrogen Peroxide (H2O2)

Q4) Which of these is non- free radical:A- Superoxide (O2') B- Hydroxyl radical (OH')

C- Hydrogen Peroxide (H2O2)

Answers

$$Q1) = A \dots Q2) = B \dots Q3) = B \dots Q4) = C$$