

# PHYSIOLOGY TEAM 432

**LECTURE : 15** Capillary Circulation & Edema Formation

Done By: Shroog Al-harbi – Naif Al-Aji Reviewed By: Rahaf Salem





# A) Capillary Circulation

# Functions of capillaries:

**1- Exchange between blood tissues** (Nutrients, Oxygen) ... and have additional function according to it's location :

- Lung => gas exchange
- Kidney => filtration
- Liver => detoxification
- 2- Drainage of waste products (from tissues to blood )

## **3- Capillary tone**

- refers to the number of closed capillaries at rest. Normally about 80%-85% of the capillaries are closed and 20%-15% are open.
- If 50% of capillaries are opened, this leads to shock.
- Capillary tone is important because it maintain pressure for perfusion.
  - Only 5% of blood found in the capillaries.

Physiology Team 432

**Cardiovascular Block** 

# Types of capillary:

- 1) Continuous:
- muscles, lungs, adipose tissue, and central
- nervous system
- 2) Fenestrated:
- kidneys, endocrine glands and intestines
- 3) Discontinuous:

bone marrow, liver, and spleen



## Structure of capillaries:



A) Structure that help in exchange materials:

1- Single layer of <u>squamous</u> endothelial Cells .

2- fenestrations (pores).

B) Structure that help in controlling blood amount that pass to the capillary network :

precapillary sphincter .

Physiology Team 432

#### **Cardiovascular Block**

## ... Role of precapillary sphincter:

-- It is a muscular ring that contact and relax according to the metabolic needs of the tissue

- -- Capillary doesn't have a vascular smooth muscle except the sphincter
- --The precapillary sphincter is sensitive to oxygen and carbon dioxide.

If the tissue contains low amount of Oxygen and high amount of Carbon Dioxide, the smooth muscles will relax and more blood will flow to the tissue. And vice versa



**Physiology Team 432** 

**Cardiovascular Block** 

| Temperature regulation |                          |                                  |                                             |  |
|------------------------|--------------------------|----------------------------------|---------------------------------------------|--|
| Blood v<br>(vasodi     | essel dilates<br>lation) | BI<br>(v                         | lood vessel constricts<br>vasoconstriction) |  |
|                        | B                        | Heat loss<br>across<br>epidermis |                                             |  |
| Increase               | Epidermis<br>d heat loss |                                  | Epidermis<br>Heat conservation              |  |
| (a)                    |                          |                                  | (b)                                         |  |
|                        | (A)                      |                                  | (B)                                         |  |
| sphincter              | relaxes                  |                                  | contracts                                   |  |
| blood flow             | increase                 |                                  | decrease                                    |  |
| excess heat            | get rid of excess h      | eat                              | conserve heat                               |  |

Physiology Team 432

**Cardiovascular Block** 

# Movement across capillaries

-- Fluid, electrolytes, gases, small and large molecular weight substances can transverse the capillary endothelium by several <u>different mechanisms</u>: diffusion, bulk flow, vesicular transport, and active transport.

-- Interstitial fluid (Extracellular Fluid) is continuously exchanged, it never stays in stagnant state .



There are two type of materials diffuse through the capillary wall:

- 1- lipid-soluble → Through the Cell
   Membranes of the Capillary Endothelium
- 2- non-lipid-soluble (water-soluble)
   →Through Intercellular "Pores" in the Capillary Membrane

**Physiology Team 432** 

**Cardiovascular Block** 



Physiology Team 432

#### **Cardiovascular Block**

| Terms       Definitions         Image: Vasoconstrictor Agents       Image: Norepinephrine and Epinephrine Angiotensin II.         -Angiotensin II.       -Vasopressin.Endothelin—A Powerful Vasoconstrictor in Damaged Blood Vessels | powerful vasodilation                                                                                                       | <ul> <li>increase in magnesium ion<br/>concentrationinhibit smooth<br/>muscle contraction.</li> </ul> |                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                      | -Angiotensin II.<br>-Vasopressin.Endothelin—A<br>Powerful Vasoconstrictor in<br>Damaged Blood<br>Vessels                    | dilation of the<br>arterioles                                                                         | increase in hydrogen ion concentration                                                                            |
| Nasodilator Agents                                                                                                                                                                                                                   | Bradykinin                                                                                                                  | <ul> <li>arteriolar constriction.</li> </ul>                                                          | slight decrease in hydrogen ion                                                                                   |
|                                                                                                                                                                                                                                      | histamine                                                                                                                   | Anions that have                                                                                      | acetate and citrate, both of which                                                                                |
| Vascular Control by<br>Ions and Other<br>Chemical Factors                                                                                                                                                                            | 🜒 ca,k,mg,h                                                                                                                 | significant effects on<br>blood<br>vessels                                                            | cause<br>mild degrees of vasodilation.                                                                            |
| <ul> <li>vasoconstriction</li> </ul>                                                                                                                                                                                                 | An increase in calcium ion<br>concentrationThis results from<br>the general<br>effect of calcium to stimulate               | An increase in carbon<br>dioxide concentration<br>causes                                              | moderate vasodilation in most<br>tissues.marked vasodilation in the<br>brain                                      |
|                                                                                                                                                                                                                                      | smooth muscle<br>contraction,                                                                                               | carbon                                                                                                | transmitted through the                                                                                           |
| vasodilation                                                                                                                                                                                                                         | increase in potassium ion<br>concentrationThis results from<br>the ability of<br>potassium ions to inhibit smooth<br>muscle | acting on the brain<br>vasomotor center, has<br>an extremely powerful<br>indirect effect,             | sympathetic nervous<br>vasoconstrictor system, to<br>cause widespread<br>vasoconstriction throughout the<br>body. |
|                                                                                                                                                                                                                                      | contraction                                                                                                                 |                                                                                                       | Rahaf salem                                                                                                       |



Physiology Team 432

**Cardiovascular Block** 

# Forces determining tissue fluid formation(Starling's Forces)

To understand the next slides please see these links:

- <u>one :)</u>
- <u>two :)</u>

<u>three :)</u>

<u>four :)</u>

**Physiology Team 432** 

**Cardiovascular Block** 

# Forces determining tissue fluid formation Starling's Forces

There is a free exchange of water, electrolytes, and small molecules between the intravascular and extravascular compartments of the body.

The primary site of this exchange is capillaries and small post-capillary venules.

Several mechanisms are involved in this exchange; however, the most important are bulk flow and diffusion.

The rate of exchange, in either direction, is determined by Starling 's Forces..

**Physiology Team 432** 

**Cardiovascular Block** 

#### Forces determining tissue fluid formation Starling's Forces



| Capillary Hydrostatic P (CHP)<br>or (Pc): | pressure caused by blood flow in capillary.                |  |  |
|-------------------------------------------|------------------------------------------------------------|--|--|
| Tissue Hydrostatic P.:                    | pressure caused by intestinal fluid in interstitial space. |  |  |
| Capillary plasma oncotic P                | pressure caused by proteins in plasma.                     |  |  |
| Tissue plasma oncotic P.                  | pressure caused by proteins in intestinal fluid            |  |  |
|                                           |                                                            |  |  |

Physiology leam 432

**Cardiovascular Block** 

# Continue....



#### Because ...

The hydrostatic pressure excluding blood, through the gaps (pores) between adjacent endothelial cells in capillaries to extra cellular fluid ECF (in interstetium) to reach cells Whereas the oncotic pressure it tend to drag fluids back to the center of capillaries.

Physiology Team 432

#### **Cardiovascular Block**

| Arteriolar end                                                                                                         |              | Venus end  |             |            |              |
|------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------|------------|--------------|
| Forces tending to move                                                                                                 | fluid outwar | <b>d</b> : |             |            |              |
| Capillary hydrostatic<br>pressure                                                                                      | 30 mmHg      |            |             | 10 mmHg 🚽  |              |
| Negative interstitial<br>fluid pressure                                                                                | 3 mmHg       |            |             | 3 mmHg     |              |
| Interstitial fluid<br>colloidal osmotic<br>pressure                                                                    | 8 mmHg       |            |             | 8mmHg      | No<br>change |
| Outward force                                                                                                          | 41 mmHg      |            |             | 21 mmHg    |              |
| Forces tending to move       fluid inward:         Plasma colloidal       28 mmHg                                      |              |            |             |            |              |
| osmotic pressure       Net Force:       41- 28 = 13 mmHg       Z8 - 21 = 7 mmHg       This is an outward force beloing |              |            |             |            |              |
| filtration at arteriolar end absorption at venular end.                                                                |              |            |             |            |              |
|                                                                                                                        |              |            |             |            |              |
| the hydrostatic pressure is more                                                                                       |              |            |             |            |              |
| than the oncotic pressure in the The opposite 🙂                                                                        |              |            |             |            |              |
| arteriolar end => filtiratoin                                                                                          |              |            |             |            |              |
| Physiology Team 432                                                                                                    | Cardio       | ovaso      | cular Block | k lecture: | 13           |

## Example:-



- 1- Constant exchange of fluid.
- 2- Accelerate distribution of substances.
- 3- Transport insoluble lipids & tissue proteins.
- 4- Carry bacterial toxins to lymphoid tissues  $\rightarrow$  provide immunity.

Physiology Team 432

Cardiovascular Block

# **B) Edema Formation**

**1.Edema:** excessive amount of fluid in the interstitial spaces.

enous return

#### **2.Factors Precipitating Edema:**

- A) capillary hydrostatic pressure
- B) plasma oncotic pressure
- C) capillary permeability
- D) Lymphatic obstruction



Pooling of blood in distended veins

> Venous pressure = 100 mm Hg

**Physiology Team 432** 

#### **Cardiovascular Block**

lecture: 13

Capillary blood

### **3.Causes of Edema:**

| A. Increased capillary pressure:     | Excess retention of salt and water by kidney                                                                                                     | a. Renal failure<br>b. Excess aldosterone.<br>c. Heart failure.                                                                                                                              |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      | Increased venous<br>pressure                                                                                                                     | <ul> <li>a. Heart failure</li> <li>b. Venous obstruction. e.g.</li> <li>thrombus, pregnancy, tumor,</li> <li>etc</li> <li>c. Failure of venous pump e.g.</li> <li>varicose veins.</li> </ul> |  |
|                                      | Decreased arteriolar resistance                                                                                                                  | a. Vasodilator drugs.<br>b. Excess body heat.                                                                                                                                                |  |
| B. Low plasma proteins:              | <ol> <li>Loss of proteins in urine.</li> <li>Loss from the skin (burns)</li> <li>Failure to produce: (Liver diseases , Malnutrition).</li> </ol> |                                                                                                                                                                                              |  |
| C. Increased capillary permeability: | <ol> <li>Release of histamine in allergy.</li> <li>Toxins. 3. Infections 4. Vit. C deficiency 5. Burns</li> </ol>                                |                                                                                                                                                                                              |  |
| D. Lymphatic<br>obstruction:         | 1. Cancer 2. Filari                                                                                                                              | a 3. congenital                                                                                                                                                                              |  |

Physiology Team 432

#### **Cardiovascular Block**

## LYMPHATIC SYSTEM:

Carry protein and large particulate matter can flow from the interstitial spaces into the blood Absorption of nutrients from the gastrointestinal tract, especially for absorption of virtually all fats in food.

**Physiology Team 432** 



1.Functions of capillaries is => exchange the (Nutrients, Oxygen &waste products ) between blood & tissues.

**2.** <u>fenestrations ( pores)</u> <u>by precapillary sphincter</u> are play an important role in the capillaries .

**3.**Several mechanisms are involved in this exchange; however, the most important are bulk flow and diffusion.

4.Starling's Forces :

Capillary Hydrostatic P (CHP) or (Pc) ,Tissue Hydrostatic P,Capillary plasma oncotic P Tissue plasma oncotic P.

5.The <u>hydrostatic pressure</u> excluding blood, through the gaps (pores) between adjacent endothelial cells in capillaries to extra cellular fluid ECF (in interstetium) to reach cells whereas the <u>oncotic pressure</u> it tend to drag fluids back to the center of capillaries
6.High hydrostatic pressure = arterial end = filtration
7.High oncotic pressure = Venus end= Absorption

8.Edema caused by:

A. Increased capillary pressure:

- B. Low plasma proteins:
- C. Increased capillary permeability:
- D. Lymphatic obstruction:

**Physiology Team 432** 

#### **Cardiovascular Block**



## If there are any problems or suggestions Feel free to contact:

## Physiology Team Leaders Mohammed Jameel & Khulood Al-Raddadi

### 432100187@student.ksu.edu.sa 432200235@student.ksu.edu.sa



Actions speak louder than Words