

OBJECTIVES

- -List the major types of normal heart sounds.
- -Understand the physiological basis for the production of normal heart sounds.
- -Understand the patho-physiological basis for the production of heart murmurs .

Physiology Team 432 Cardiovascular Block lecture: 7

Physiology Team 432 Cardiovascular Block lecture: 7

Heart Sounds

Detected over anterior chest wall by:

Auscultation: (Stethoscope) "hearing"

• Phonocardiography: (Sound recording device) "on piece of paper"

'4' heart sounds can be detected:

- 1st & 2nd ht sounds ... (normally heard)
- 3rd & 4th ht sounds ... (sometimes detected)

Physiology Team 432

Cardiovascular Block

Heart Sounds' Windows

Best heard at 4 certain areas:

Aortic area:

•2nd Rt costal cartilage.

Pulmonary area:

2nd Lt intercostal space.

Tricuspid area:

•lower part of sternum towards Rt side.

Mitral area:

- •5nd Lt intercostal space crossing mid-clavicular line. <u>or</u>
- 9 cm (2.5-3 in) from sternum.

نبضات القلب ممكن نسمعها في أي مكان بس هنا تكون أعلى وأوضح!

Easy way to memories them:

<u>All People Take Medicine</u>

Physiology Team 432

Cardiovascular Block

	S1	S2	S3	S4
Cause	Sudden closure of AV-vs	Sudden closure of semilunar vs	Rush of blood during rapid vent filling > vibration of vent. muscles.	Vibration produced by cont. of atrial muscles (attributed to vent filling)
C-Cycle	Marks <u>beginning of</u> <u>vent systole</u> (Iso-volumetric contraction)	Marks <u>beginning of vent</u> <u>diastole</u> (Iso-volumetric relaxation)	Max vent filling phase of diastole	Atrial systole (just before 1st HS)
Duration	0.15 sec (Longer)	0.11-0.125 sec (Shorter)	0.05 sec	0.04 sec
Frequency	25-35 Hz	50 Hz	20-30 Htz	20 cycles / sec or less [Htz]
Character	Low pitch (LUB) (Louder)	High pitch (DUB) (Softer, Sharper) Split into 2 sounds during inspiration only = Physiological splitting (due to delay closure of pulmonary v)ECG relationship: The second heart sound occur soon after the T-wave of ECG.	Usually not audible Heard in Children	Usually not audible (Rarely heard) Heard in Elderly
Best heard?	أقرب للـ M & T AV-vs	A & P أقرب للـ Semilunar vs	М	M
	Physiology Team	1 432 Cardiovascula	r Block lec	ture: 7

The S₂ duration is 0.11 Sec and S₁ is about 0.14 second

The <u>reason for the shorter S₂</u> is that semilunar valves are more tight than A-V valves, so they vibrate for a shorter time than A-V valve

The S₂ has higher frequency than the S₁ for two reasons:

- 1. The tautness of the semilunar valves than A-V valves
- 2. The greater elastic coefficient of the taut arterial walls that provide the principal vibrating chambers for the S₂.

Physiology Team 432

Cardiovascular Block

Physiology Team 432

Cardiovascular Block

What Makes Noises in the Heart?

Valves closing: "Normal"

Atrio-ventricular = (S1)

Semilunar = (S2)

Abnormal intra-cardiac hemodynamics: e.g.:

Blood striking the left ventricle: = S3 & S4

Increased flow across normal valves.

Turbulent flow through an abnormal valve.

Turbulent flow through septal defect.

"هنا مو مرض بس الصوت الثالث والرابع صار عالي"

Significance of heart sounds?

Important for diagnosis of abnormal heart sounds (murmurs)

Physiology Team 432

Cardiovascular Block

N.B. Murmurs are longer than heart sounds فترة الـ Murmurs أطول عشان كذا نقدر نسمعها

Causes	How to Describe?
Physiological: -Increase blood flow across normal valves: - e.gPregnancy-Hyperthyroidism- Anemia-Fever-children	Timing (systolic or diastolic) لازم نعرف هو جا في فترة الانقباض أو الارتخاء إذا طلع الصوت بعد نبضة"انقباض" فهذا: systolic murmur.
Pathological: - Congenital - Turbulent flow through <u>abnormal</u> valves, or septal defect:	Shape Location
e.g. -Tight valve (stenosis تضيّق) thickness, stiffness, fibrosis	Radiation If it moves to another place.
-Leaky valve (regurgitation or insufficiency) مو قادر پسگر کویّس	Intensity Pitch
	Quality

Physiology Team 432

Cardiovascular Block

	Heart Murmu	ırs
Valve	Abnormality	Timing of Murmur
Aortic or pulmonary	Stenosis	Systolic
	Insufficiency	Diastolic
Mitral or tricuspid	Stenosis	Diastolic
	Insufficiency	Systolic

Physiology Team 432 Cardiovascular Block lecture: 7

2. Shape

- Crescendo (grows louder) •
- Decrescendo •
- Crescendo-decrescendo (Diamond-shaped) •
- "Plateau مستقيم"

Murmurs described according to the waxing & waning of the sound

Diamond shape ممکن یصیر من فوق بس

Crescendo-decrescendo is Diamond shaped but from both sides up and down.

Physiology Team 432

Cardiovascular Block

3. Location of maximum intensity

Determined by the site where the murmur originates e.g. A, P, T, M listening areas.

4. Radiation

Reflects intensity of the murmur & direction of blood flow.

5. Intensity

Grade2 (II)

Grade3 (III)

Grade4 (IV)

Grade5 (V)

Graded on a 6 point according to **Levine scale**:

For example: I heard it in the mitral area and it goes to the axilla, the voice is moving! I don't hear it on one place! If I move the stethoscope I still can hear it!

Grade1 (I)	Lowest intensity - Very faint - need <u>quiet room</u> and <u>trained</u> ear to hear.	
	(difficult to hear even by expert listeners) "real cardiologist can detect it"	

Low intensity - Quiet but heard immediately - audible to anyone who listens
attentively (usually audible by all listeners)

Medium intensity - Moderately loud - (easy to hear even by inexperienced
listeners, but without a palpable thrill 'I can't feel it with my hand')

Medium intensity - Loud - Thrills 'I can feel it with my hand' - palpable: it
produces a precordial thrill.

- Thrills!!دون السماعة!!Loudest intensity - audible without a stethoscope

6. Pitch

High, medium, low.

7. Quality

Blowing, harsh, rumbling & musical

8. Others:

Variation with respiration: • Right sided murmurs change > left sided

Variation with position of patient • هل يختلف باختلاف وضعية المريض!

Variation with special maneuvers • Valsalva >> Murmurs decrease in length & intensity

Main principle for murmurs:

Semilunar Stenosis => Systolic murmur. AV Stenosis => Diastolic murmur.

Insufficient Semilunar => Diastolic murmur. Insufficient AV => Systolic murmur.

Systolic Murmurs

Derived from harsh & increase turbulence in flow.

Associated with:

- 1. I flow across normal valve I flow into a dilated great vessel.
- 2. 1 flow across an abnormal valve, or narrowed ventricular outflow tract e.g. aortic /pulmonary stenosis.
- 3. I flow across an incompetent AV valve e.g. *mitral/tricuspid regurgitation*.
- 4. flow across the inter-ventricular septum e.g. VSD.

Physiology Team 432

Cardiovascular Block

Systolic Murmurs

Early Systolic

Mid Systolic (Ejection)

Late Systolic

Pansystolic (Holosystolic)

<u>Most common</u> kind of heart murmur - Usually crescendo-decrescendo.

They can be:

- 1. Innocent: Common in children & young adults.
- 2. Physiological: Can be detected in hyper-dynamic states, e.g. anemia, pregnancy, fever & hyperthyroidism.
- 3. Pathological: Secondary to structural CV abnormalities
- e.g. Aortic/pulmonary stenosis, Hypertrophic cardiomyopathy & mitral prolapse.

Aortic Stenosis:

Narrowing of aortic outflow tract causing obstruction of flow from LV into ascending aorta.

T- mid-systolic (ejection) murmur

L- best heard @ aortic area, radiates along carotid arteries

C- harsh, loud, may have associated thrill, "ejection click"

A- older age, bicuspid aortic valve, rheumatic fever

Note: T- Timing; L- Location; C- Character; A- Association

Mitral Prolapse:

Bulging of one or both mitral valve leaflets into LA during LV systole.

T- mid- late systolic murmur

L- best heard @ apex

C- mid systolic click

A- ~5% normal population, asymptomatic, sudden death.

Early Systolic

Mid Systolic (Ejection)

Late Systolic

Pansystolic (Holosystolic)

Pathological murmur.

Begins immediately with S1 & continues up to S2.

Heard with:

Mitral/tricuspid regurgitation •

Ventricular septal defect (VSD) •

Note: T- Timing; L- Location; C- Character; A- Association

Mitral Regurgitation:

Retrograde flow from LV into LA through an incompetent mitral valve.

- T- holo-systolic murmur
- L- best heard @ apex, radiates to left axilla
- C- soft, high-pitched, blowing
- A- MV prolapse, MV myxomatous degeneration, MI, rheumatic heart disease, cardiomyopathy, endocarditis.

S1 S2

Physiology Team 432

Cardiovascular Block

Diastolic Murmurs

Diastolic murmurs: Very rare, low frequency, low intensity and best identified with the bell of the stethoscope

Almost always *indicate heart disease*

Two basic types:

1. Early decrescendo diastolic murmurs

Signify regurgitant flow through an incompetent semilunar valve e.g. aortic/pulmonary regurgitation.

2. Rumbling diastolic murmurs in mid- or late diastole

Suggest stenosis of an AV valve e.g. mitral/tricuspid stenosis

Physiology Team 432

Cardiovascular Block

Physiology Team 432

Cardiovascular Block

Continuous Murmurs

Begin in systole, peak near S2 & continue into all or part of diastole

Heard with:

Patent ductus arteriosus (PDA)

Ventricular septal defect (VSD)

Murmur during systole and diastole. في الـSystole يكون (more tense) لان الضغط في الـ Aorta اعلى.

Physiology Team 432

Cardiovascular Block

- We can Detect heart sounds over anterior chest wall. •
- There are 'windows' places to hear them clearer and louder. Aortic, Pulmonary, Tricuspid and Mitral areas.
- Normal heart sounds: S1, S2, S3 and S4. •
- What make these noises are valves closing 'normal' and abnormal intracardiac hemodynamics.
- abnormal heart sounds => murmurs. •
- We have to describe every murmur by the timing, shape, location, radiation, intensity, pitch and quality.
- The main principle for murmurs is:
- Semilunar Stenosis => Systolic murmur, AV Stenosis => Diastolic murmur.
- Insufficient Semilunar => Diastolic murmur. Insufficient AV => Systolic murmur.
- There are Systolic murmurs, Diastolic murmurs and continuous murmurs.

Physiology Team 432

Cardiovascular Block

Normal Heart Sound: http://youtu.be/X0p9GqvaKDw

Systolic Murmurs:

- 1. Aortic stenosis ejection murmur http://youtu.be/MJg257pyt41
- 2. Pulmonary stenosis ejection murmur + splitting S2
- 3. Mitral / Tricuspid regurgitation holosystolic http://youtu.be/vL0s_nEkC8Q
- **4. Mitral valve prolapse –** mid-late systole mid systolic *click*
- 5. Ventricular septal defect (VSD) holosystolic

Diastolic Murmurs:

Softer, blowing, gurgle

- 1. Aortic regurgitation early diastole http://youtu.be/HtDzHWNYKQM
- **2. Mitral stenosis** mid to late (pre-systolic)diastole <u>Open snap</u> http://youtu.be/OQ9xrxDg3uc

Continuous Murmurs:

- 1. Patent ductus arteriosus (PDA)
- 2. Ventricular septal defect (VSD)

Physiology Team 432

Cardiovascular Block

QUESTIONS

- 1-the second heart sound occur soon......
- A-before the T-wave
- **B-after the T-wave**
- **C-at QRS complex**
- 2-tricuspid valve regurgitation occur in
- A-systolic B- diastolic
- 3- intensity graded on a 6 point according to
- 4-Mitral Stenosis best hear in......
- A- 2nd intercostal space
- **B-upper left sternal border**
- C-apex

1-b

2-a

3-<u>Levine scale</u>

4-c

Physiology Team 432

Cardiovascular Block

THE END

If there are any problems or suggestions Feel free to contact:

Physiology Team Leaders
Mohammed Jameel & Khulood Al-Raddadi

432100187@student.ksu.edu.sa 432200235@student.ksu.edu.sa

