Capillary Circulation & Edema Formation

Dr. Eman El Eter

0

Functions of capillaries

Exchange between blood & tissues: Nutrients,

Oxygen

Drainage of waste products: tissues....to blood

Capillary tone

Temperature regulation

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Blood vessel dilates (vasodilation)

(a)

Blood vessel constricts (vasoconstriction)

Epidermis

Heat conservation

(b)

Capillary exchange of gases & nutrients

Movement across capillaries

 Fluid, electrolytes, gases, small and large molecular weight substances can transverse the capillary endothelium by several different mechanisms : diffusion, bulk flow, vesicular transport, and active transport.

Capillary exchange of gases & nutrients

Forces determining tissue fluid formation Starling's Forces

- There is a free exchange of water, electrolytes, and small molecules between the intravascular and extravascular compartments of the body.
- The primary site of this exchange is capillaries and small postcapillary venules.
- Several mechanisms are involved in this exchange; however, the most important are bulk flow and diffusion.
- The rate of exchange, in either direction, is determined by Starling 's Forces..

Forces determining tissue fluid formation: Starling's Forces

 P_C = capillary hydrostatic pressure P_T = tissue hydrostatic pressure π_C = capillary plasma oncotic pressure π_T = tissue fluid oncotic pressure

RK 92

NDF = $(P_{C} - P_{T}) - \sigma (\pi_{C} - \pi_{T})$

When NDF > 0 \rightarrow Filtration When NDF < 0 \rightarrow Reabsorption

Hydrostatic (P) and oncotic (π) pressures within the capillary and tissue interstitium (T) determine the net driving force (NDF) for fluid movement into the capillary (reabsorption) or out of the capillary (filtration). The oncotic pressure difference is multiplied by the reflection coefficient (σ) that represents the permeability of the capillary barrier to the proteins responsible for generating the oncotic pressure.

Net Filtration Pressure

Forces at arteriolar end and venular end of capillaries

Analysis of forces causing	Analysis of forces causing
filtration at the arteriolar end of the	reabsorption at the venular end of
capillary	the capillary

Forces tending to move fluid outward:

Capillary hydrostatic pressure	30 mmHg	10 mmHg
Negative interstitial fluid pressure	3 mmHg	3 mmHg
Interstitial fluid colloidal osmotic pressure	8 mmHg	8mmHg
Outward force	41 mmHg	21 mmHg

Forces tending to move fluid inward:

Plasma colloidal	28 mmHg	28 mmHg
osmotic pressure		

Net Force:

41- 28 = <mark>13</mark> mmHg	28 – 21 = 7 mmHg
This is an outward force helping	This is an inward force helping
filtration at arteriolar end	absorption at venular end.

Edema Formation

The interstitial volume (bounded area) depends on the rates of filtration, reabsorption, lymph flow, and the compliance of the interstitial compartment. • Factors Precipitating Edema

- Increased capillary hydrostatic pressure) as occurs when venous pressures become elevated by gravitational forces, in heart failure or with venous obstruction(
- Decreased plasma oncotic pressure)as occurs with hypoproteinemia during malnutrition(
- Increased capillary permeability caused by proinflammatory mediators (e.g., histamine, bradykinin) or by damage to the structural integrity of capillaries so that they become more "leaky" (as occurs in tissue trauma, burns, and severe inflammation(
- Lymphatic obstruction (as occurs in filariasis or with tissue injury(

Causes of Edema:

- Edema means accumulation of fluid in the ECF space
- **Causes:**
- **A. Increased capillary pressure:**
- I. Excess retention of salt and water by kidney:
- a. Renal failure
- b. Excess aldosterone.
- c. Heart failure.

2. Increased venous pressure:

- a. Heart failure
- b.Venous obstruction. e.g. thrombus, pregnancy, tumor, etc..
- c. Failure of venous pump e.g. varicose veins.
- 3. Decreased arteriolar resistance:

a.Vasodilator drugs.

b. Excess body heat.

B. Low plasma proteins:

- I. Loss of proteins in urine.
- 2. Loss from the skin (burns)
- 3. Failure to produce:
- a. Liver diseases
- b. Malnutrition.

C. Increased capillary permeability:

- I. Release of histamine in allergy.
- 2. Toxins.
- 3. Infections
- 4.Vit C deficiency
- 5. Burns

- **D. Lymphatic obstruction:**
- I. Cancer
- 2. Filaria
- 3. congenital