PHYSIOLOGY TEAM 432

LECTURE 86 Tubular secretion

Done By: Othman Al-Hekail Reviewed By: Marwah Zummo – Khulood Al-Raddadi

Absorption part in this lecture was removed to lecture 5

At the end of this lecture student should be able to describe:

Mechanism of Bicarbonate reabsorption

Mechanism of Phosphate reabsorption

Urea reabsorption

Mechanism of Tubular secretion of K & H

Physiology Team 432

Renal Block

Mechanism of Tubular secretion of K & H

- Secretion: From peritubular blood through peritubular space into renal tubular cell to tubular lumen.
 - Passive NH3 (ammonia), salicylic acid.
 - Active:
 - > Tubular maximum (Tm) : creatinine; PAH.
 - No Tm (no limit for secretion because they have to be tightly regulated) : K & H.
- ✓ Potassium (normally in plasma between 3.5-5): (>5 toxic)
 - 90% of filtered K is reabsorbed (PCT)
 - K is secreted in DCT passively in exchange for Na and under the control of Aldosterone hormone.
 - H and K compete together for exchange with Na.

✓ Hydrogen:

• Excretion exchange for Na.

Physiology Team 432

Renal Block

LOOP OF HENLE

The Thin Loop of Henle:

- Cells simple squamous epithelial cells
- "Highly permeable to water but not to solutes"

THE DESCENDING LOOP

- Permeable to water but not for solute absorption.
- ✓ 20% of filtered water is reabsorbed.
- ✓ osmolality of filtrate increases from 290 (plasma) to 1200 mOsm/l at the tip of the loop.
- ✓ The increasing osmolality is due to only water reabsorption, ↑
 NaCl and ↑ Urea concentration in filtrate.

Only water is reabsorbed

Physiology Team 432

Renal Block

THE ASCENDING LOOP OF HENLE AND EARLY DCT

Different physiology from descending because of different structures

Cells are cuboidal epithelial; Highly permeable to solutes, particularly NaCl, but not to water

No function so far

- Water impermeable
- Na/K/2Cl reabsorption by co-transport (luminar)
- Na/K ATPase in basolateral membrane
- ✓ Filtrate diluted due to solute reabsorption not water
- ✓ Osmolarity drop from 1200 to 200mosm/l

The thick ascending limb is very sensitive to diuretic drugs (Furosamide). These diuretics (Lasix) block Na+ K+ 2CF co-transporter:

THICK ASCENDING

LOOP 2

- ✓ Decreased NaCl reabsorption
- Isotonic fluid delivered to distal tubule instead of a hypotonic fluid
- Increased fluid excretion –
 "diuresis"
- ✓ These drugs are called "Loop" diuretics

Physiology Team 432

Renal Block

THE LATE DCT AND CORTICAL COLLECTING DUCT

Cuboidal cells are of two distinct functional types principal and intercalated cells.

- Principal cells permeability to water and solutes is regulated by hormones (ADH & aldosterone).
- Intercalated cells secretion of hydrogen ions for acid/base balancing.

CELLS OF THE MEDULLARY COLLECTING

Physiology Team 432

Renal Block

lecture: 6

21

UREA RECIRCULATION

Urea is passively reabsorbed in proximal tubule.
In the presence of ADH, water is reabsorbed in distal and collecting tubules, concentrating urea in these parts of the nephron.

•The inner medullary collecting tubule is highly permeable to urea, which diffuses into the medullary interstitium.

•ADH increases urea permeability of medullary collecting tubule.

Urea is filtered \rightarrow 40-50% reabsorbed in PCT \rightarrow reabsorbed in collecting duct in the presence of water.

Physiology Team 432

Renal Block

OSMOLALITY OF THE FILTBATE ALONG THE NEPHBON Briefly

PCT: Iso

- DL: Hyper (1200 at the tip)
- AL: Iso or even Hypo (reduced again) "diluted segment of nephron".
- The rest of the parts depend on ADH.

Physiology Team 432

Renal Block

OSMOLALITY OF THE FILTBATE ALONG THE NEPHBON

Details

• Osmolality of filtrate in PCT:

- Similar to plasma ~ 290 mosm
- Due to reabsorption of equal portion of solute & water

• Osmolality of filtrate in Descending Loop:

– Graded \uparrow in osmolality from 300 mosm. To maximum of 1200 mos. at the tip of loop

- Due to only water reabsorption
- Osmolality of filtrate in Ascending Loop:
 - Graded ↓in osmolality1200-150
 - Due to only solute reabsorption
- Osmolality of filtrate in Collecting D:
 - Osmolality depend on ADH
 - $\uparrow ADH \rightarrow \uparrow$ water reabsorption \rightarrow concentrate urine 1200 mosm
 - No ADH \rightarrow no water reabsorption \rightarrow dilute urine 50mosm

Physiology Team 432

Renal Block

	Segment	% filtered load reabsorbed	Mechanism of H ₂ O reabsorption	Hormones that regulate H ₂ O permeability
I	Proximal tubule	67	Passive	None
DI	Henle's loop	15	DL only; passive	None
I	Distal tubule	O Water impermeable	No water reabsorption	None
	Late distal tubule & collecting duct	~8-17	Passive	ADH
	Physiology Team 4	32	Renal Block	lecture: 6

SUMARY

Male

Transport of substances from peritubular capillaries to tubular lumen:

Primary active secretion:

- For H⁺
- In late distal & collecting tubules
- H⁺ -ATPase pump at luminal membrane

Secondary active secretion (depends on primary active secretion):

- H+ in PCT (counter-transport)
- K⁺, urate in distal tubules

- Substances that become absorbed are more than substances that are secreted.
- Absorption is in different direction with secretion:
 - Absorption: from tubular lumen into renal tubular cell to peritubular space to peritubular blood .
 - Secretion: From peritubular blood through peritubular space into renal tubular cell to tubular lumen.
- If a patient has hyperkalemia ([↑]K), he will present with acidosis, WHY ?? Because K and H compete together but the "K" has the priority to get rid from the body so the H is left inside the cells which causes Acidosis.
- The diluted segment of the nephron is " thick ascending limb", WHY ?? Because it helps in filtrate diluting after passing the descending limb "concentrated filtrate".
- H is secreted in PCT by 2nd active secretion (counter-transport) in exchange for Na but under hormonal control (aldosterone) in DCT.
- Diuretic drugs will block Na/K/2Cl co-trasporter in the ascending limb.

Physiology Team 432

Renal Block

From Linda

EARLY PROXIMAL TUBULE

From quizlet

1. Reabsorbed in Ascending Limb	Na, Cl, K.	
	Cuboidal to columnar cells.	
2. Reabsorbed in Collecting Duct	H2O, Na, H, HCO3, urea.	
	Intercalated cells (cuboidal w/microvilli) & Principal cells (cuboidal w/out microvilli).	
3. Reabsorbed in DCT	Na (aldosterone reg.), Ca (PTH reg.), Cl (cotransported with Na).	
	Cuboidal cells with very few microvilli.	
4. Reabsorbed in Descending Limb	H20.	
	Simple squamous epithelium.	
5. Reabsorbed in PCT	Na, glucose, amino acids, H2O, many ions, & HCO3.	
	Cuboidal cells with dense microvilli & large mitochondria.	
6. Secreted in Ascending Limb	Urea.	
	Cuboidal to columnar cells.	
7. Secreted in Collecting Duct	K, H, HCO ₃ , NH ₄ .	
	Intercalated cells (cuboidal w/microvilli) & Principal cells (cuboidal w/out microvilli).	
8. Secreted in PCT	H, NH4, & some drugs.	
	Cuboidal cells with dense microvilli & large mitochondria.	

Physiology Team 432

Renal Block

From Linda

Segment/Cell Type	Major Functions	Cellular Mechanisms	Hormone Actions	Diuretic Actions
Early Proximal Tubule	Isosmotic reabsorption of solute and water	Na ⁺ -glucose, Na ⁺ - amino acid, Na ⁺ - phosphate cotransport	PTH inhibits Na ⁺ - phosphate cotransport	Osmotic diuretics
		Na ⁺ -H ⁺ exchange	Angiotensin II stimulates Na ⁺ -H ⁺ exchange	Carbonic anhydrase inhibitors
Late Proximal Tubule	Isosmotic reabsorption of solute and water	NaCl reabsorption driven by Cl [–] gradient		Osmotic diuretics
Thick Ascending Limb of the Loop of Henle	Reabsorption of NaCl without water Dilution of tubular fluid	Na ⁺ -K ⁺ -2Cl ⁻ cotransport	ADH stimulates Na ⁺ -K ⁺ - 2Cl ⁻ cotransport	Loop diuretics
, ·	Single effect of countercurrent multiplication			
	Reabsorption of Ca ²⁺ and Mg ²⁺ driven by lumen-positive			
	potential			1
Physiology Te	eam 432	Renal B	lock	lecture: 6

From Linda

Early Distal Tubule	Reabsorption of NaCl without water Dilution of tubular fluid	Na ⁺ -Cl ⁻ cotransport	PTH stimulates Ca ²⁺ reabsorption	Thiazide diuretics
Late Distal Tubule and Collecting Ducts	Reabsorption of NaCl	Na ⁺ channels (ENaC)	Aldosterone stimulates Na ⁺ reabsorption	K ⁺ -sparing diuretics
(principal cells)	K secretion	K channels	K ⁺ secretion	
	Variable water reabsorption	Water channels	ADH stimulates water reabsorption	
Late Distal Tubule and Collecting Ducts (α-intercalated cells)	Reabsorption of K ⁺ Secretion of H ⁺	H ⁺ -K ⁺ ATPase H ⁺ ATPase	 Aldosterone simulates H ⁺ secretion	K ⁺ -sparing diuretics

ADH, Antidiuretic hormone; PTH, parathyroid hormone; ENaC, epithelial Na⁺ channel.

Physiology Team 432

Renal Block

If there are any problems or suggestions Feel free to contact:

Physiology Team Leaders Mohammed Jameel & Khulood Al-Raddadi

432100187@student.ksu.edu.sa 432200235@student.ksu.edu.sa

THANK YOU

Actions speak louder than Words