
MED-432

Values of Renal Physiology

Done By:

Shaimaa Al-Refaie

- Ureters have regular peristaltic contraction 1-5/min
- ❖ During filling phase of bladder urine is produced but can be controlled. it means that we can hold urine but within limitation (0 50 ml)

Urinary bladder pressure Vs. volume (cystometrogram)

Change in pressure is minimum until 300 ml.

Under our control

Slight increase in pressure + increase of urine volume (0-50 ml)..phase I

- Minimum increase (not very much) in pressure + increase in urine volume(50-400 ml)..phase II
- Sudden sharp rise in pressure (sense of fullness at about 400 ml)..phase III
- >400 ml we can't keep urine, we have to pass it.
- urge to avoid urine (first sensation) at urine volume of 150-200 ml

الضغط يزيد لان حجم المثانة صغير في بداية دخول اليورن لها

الضغط ماراح يزيد بشكل كبير زي الفوليوم، لأن المثانة تتمدد

Abnormal micturition (spinal cord transaction): car accident

- in the first 2 weeks, 5 or 10 ml of urine will pass directly without stimulation (incontinance).
- After 2 weeks, spinal reflex for emptying will resume with NO voluntary control.

#5-TUBULAR REABSORPTION

Calculation of tubular reabsorption (transport) or secretion from renal clearance

- ✓ Quantity filtered = Px × GFR
- ✓ Quantity excreted = Ux ×V

Tx = 0 Tx = positive Tx = negative

- Filtered = excreted
- Inulin
- Feely filtered, not reabsorbed nor excreted
- filtered > excreted
- glucose
- freely filtered & completely reabsorbed
- filtered < excreted
- PAH
- Freely filtered, not reabsorbed but secreted

Glucose reabsorption

- <u>'Renal threshold'</u>: If plasma glucose (PG) reached 200 mg/dl in arterial & 180 mg/dl in venous, glucose appear in the urine.
- <u>Tubular transport maximum for glucose (Tm G)</u>: the amount of reabsorped glucose at very high filtered glucose, remain constant = 375 mg/min (female 300 mg/min).
- Filtered load: 125 mg/min

Na reabsorption: 65-70 % of filtered Na is reabsorbed in PCT.

Water reabsorption: 60-70 % of filtered water is reabsorbed in PCT.

<u>Bicarbonate reabsorption</u>: 90% of filtered bicarbonate is reabsorbed in PCT.

Phosphate

- 80% in bones, teeth & skeleton
- 20% intracellular P.
- 1 mmol/L plasma P (freely filtered)
- 1/3 of filtered P is excreted in urine.
- 2/3 reabsorbed co-transported with Na.

Urea

- Plasma urea concentration = 15-40 mg/ 100ml
- 40-50% of filtered urea reabsorbed by passive diffusion following Na & water.
- 50-60% excreted.
- In renal failure plasma urea >40mg/100ml

Amino Acid

All filtered AAs are reabsorbed in PCT

NOTES

- ✓ Glucose & AAs transported from cell to interstitium by <u>facilitated diffusion</u>.
- ✓ The reabsorption of filtered HCO3 is inhibited by decreases in arterial PCO2.
- ✓ Reabsorption of filtered HCO3 is nearly 100% of the filtered load.
- √ When glucose > the Tm, the renal vein glucose concentration will be < artery concentration, because some glucose is being excreted in urine & therefor is not returned to the blood.
 </p>
- √ The clearance of glucose is zero at concentration < Tm or (threshold) when all of the filtered glucose is reabsorbed, but is greater than zero at concentration > Tm.
- ✓ Increased filtration fraction will increase the reabsorption of isosmotic fluid in the PCT

#6-Tubular secretion

Potassium

- 3.5-5 in plasma, (>5 toxic).
- 90% of filtered K is reabsorbed in (PCT).
- K is <u>secreted</u> in <u>DCT passively</u> in exchange for Na (under the control of Aldosterone hormone).

Hydrogen

Excretion exchange for Na.

#7 - Dilutions & concentration of urine

- Normal water intake:
 - Urine flow = 1-2 ml/min
 - Urine osmolality = 500 700 mOsm/kg
- Obligatory urine volume = 0.5 ml/min
- High water intake:
 - Urine osmolality = 50 mOsm/kg
- Low water intake:
 - Urine osmolality = 1200 1400 mOsm/kg
- Normal range:
 - Urine osmolality = 30- 1200 mOsm/kg
 - Urine volume = 0.5 20 ml/min

#9 + #11-Acid Base system & acid base imbalance

Natural chemistry & solutions PH = 7

Normal range of blood PH = 7.35 - 7.45

Blood PH can be calculated by Henderson-Hasselbach equation:

•PH = pKa+ log10
$$\frac{[Base]}{[Acid]}$$
 = $\begin{bmatrix} 6.1 + \log \frac{HCO_3^-}{0.03 \ X \ PCO_2} \end{bmatrix}$ In the case of bicarbonate

Normal range of Extracellular PH = 7.4 (7.3-7.5) - very narrow range -

Normal arterial blood PH = 7.4
Normal venous blood PH = 7.35

Normal H concentration = 40 nEq/L (10-160 nEq/L)

The limits of PH that a person can live more than a few hours = 6.8 - 8.0 Out of this range death accures.

Acid Base imbalances

PH < 7.35 Acidosis

PH > 7.45 Alkalosis

#10- Buffer system

Bicarbonate buffer

HCO3 = 24-28 meq/ml

Phosphate buffer

- Intracellular PH is more acidic (7.2)

Respiratory Acidosis

The normal partial pressure of CO2 = 35-45

Metabolic Acidosis

Bicarbonate deficit < 22mEq/L

Metabolic alkalosis

- Bicarbonate > 26 mEq/L