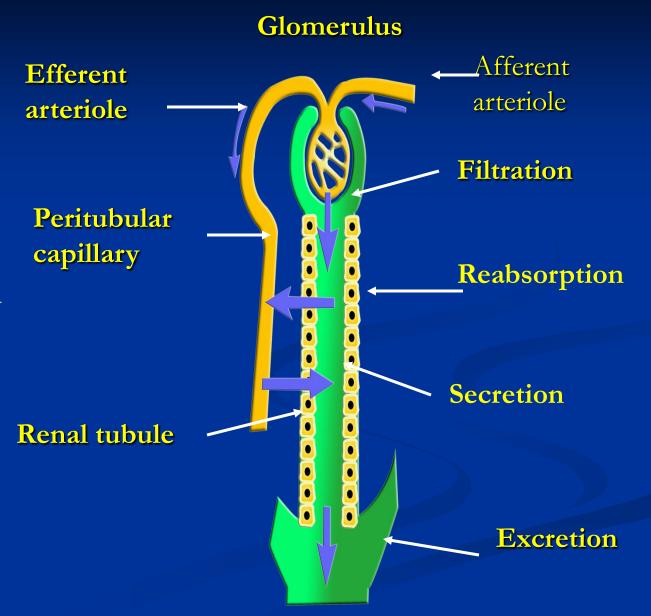
Regulation of Glomerular Filtration

Objectives


At the end of this lecture student should be able to describe

- Mechanisms of urine formation
- Composition of filtrate
- Filtration pressures
- Filtration Membrane
- Calculation of GFR, FF
- Factors affecting GFR

Principal of urine formation

1. Filtration glomerulus

2. Absorption and secretion tubule

Basic Mechanisms of Urine Formation

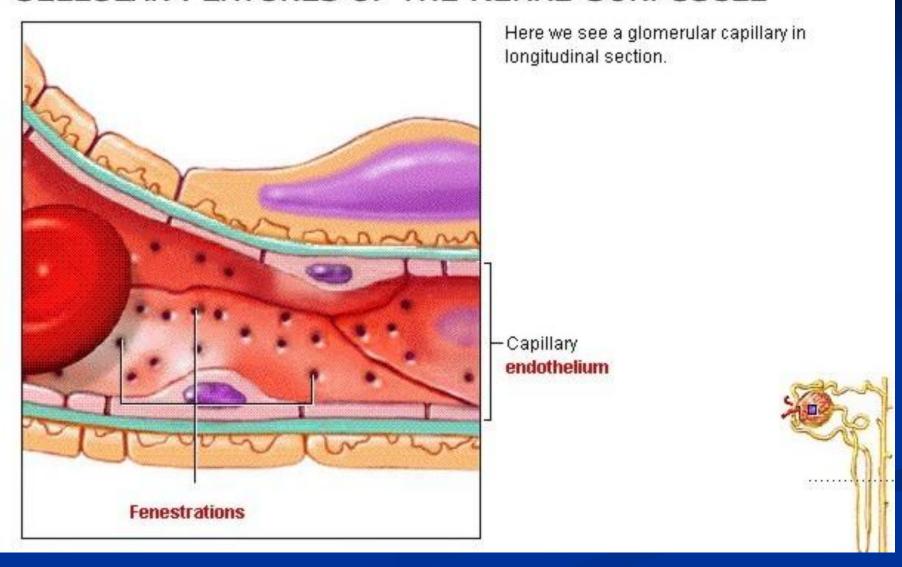
- 1. Glomerular filtration
- 2. Reabsorption
- 3. Secretion
- 4. Urine concentration

Glomerular Filtration

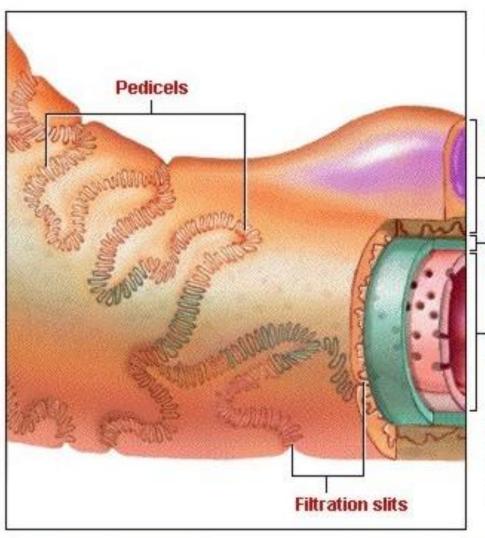
During filtration, large quantity of water and solutes pass through the filtration membrane from the blood into the glomerular capsule.

Glomerular Filtration

- Plasma ultrafiltration
- Composition of filtrate (same as plasma except plasma protein)
- Isaotonic (~300 mosmo/1)
 - Water
 - Electrolytes
 - **■** Glucose
 - Urea
 - **■** Creatinine


Filtration membrane

- **■** Filtration membrane
 - Capillary endothelial
 - Basement layer (mesengial cell)
 - Capsule epithelial layer podocytes


Characteristic of filtration membrane

- Endothelial layer
 - Fenestration 70-100 nm (pores)
- Basement membrane
 - Homogenous collagenous fibers with no pores
 - -vely charge (sailoprotein)
 - Contractile mesengial cells
- Epithelial membrane
 - Podocytes
 - Slit pores 25-60nm

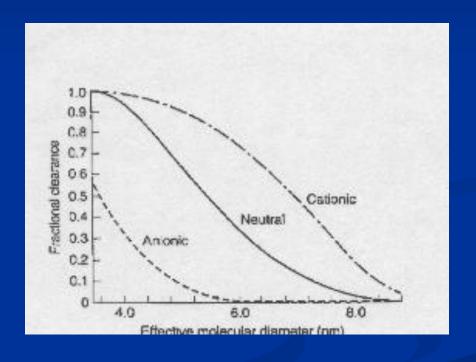
CELLULAR FEATURES OF THE RENAL CORPUSCLE

CELLULAR FEATURES OF THE RENAL CORPUSCLE

Surrounding the basement membrane is a layer of podocytes.

Podocyte

cell body with nucleus


Basement membrane

-Capillary endothelium

Together, the fenestrated capillary endothelium, basement membrane, and podocytes make up the filtration membrane.

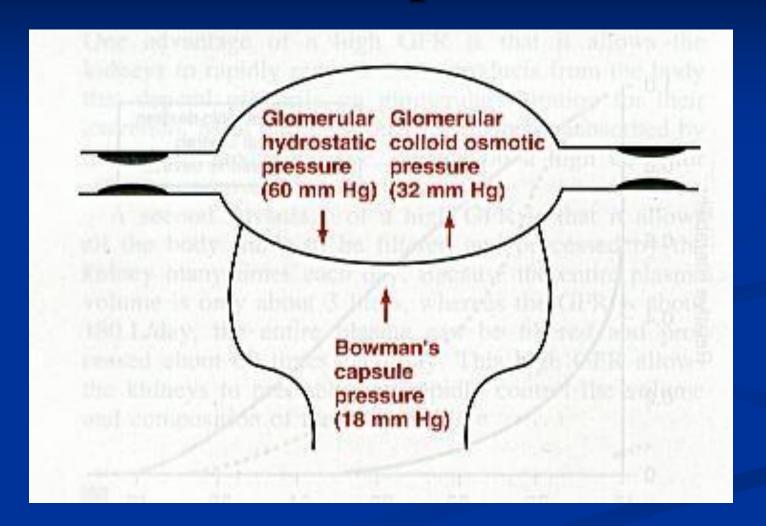
Filtration of Molecules

- 1. Molecular size and charge regulate filtration
- < 4nm freely filtered</p>
- 4-8 nm
 - vely charge
 poorly filtered
 compared to
 neutral & +vely
 charge
- > 8 nm not filtered

Filtration pressure

- Pressure that moves plasma out of the glomerulus capillary into the Bowman capsule space
- Four different pressures affect filtration
- The algebraic sum of these pressures is the driving pressure for filtration

Filtration pressure (starling forces)


1. Glomerular hydrostatic pressure (PGC)

2. Glomerular osmotic pressure (π GC)

3. Bowman hydrostatic pressure (PBS)

4. Bowman osmotic pressure $(\pi BS) = zero$

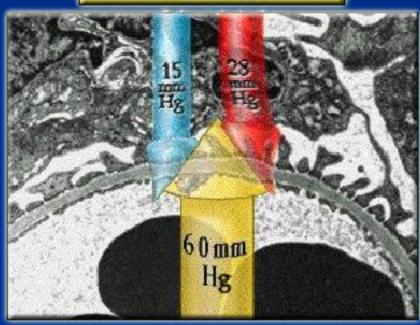
Filtration pressure

Starling forces & filtration

- 1. Hydrostatic pressure (P_{GC})
 - **■** Favors filtration
 - 60 mmHg
 - Remain constant along the entire glomerular capillary
- 2. Hydrostatic pressure in Bowman space (PBS)
 - Opposes filtration
 - 18 mmHg
 - Due to filtered fluid in the capsule

Starling forces & filtration cont.

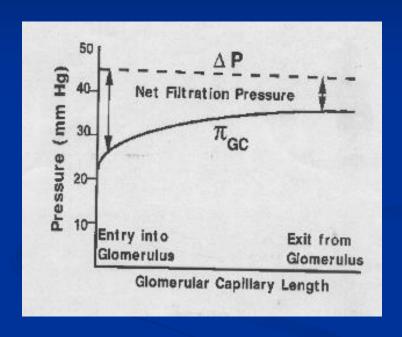

- 3. Colloid osmotic pressure in glomerular capillaries (π GC)
 - **■** Opposes filtration
 - 32 mmHg
 - Caused by plasma protein
 - Is not constant
- 4. Colloid osmotic pressure in Bowman capsule (π BC)
 - Zero (no plasma protein)

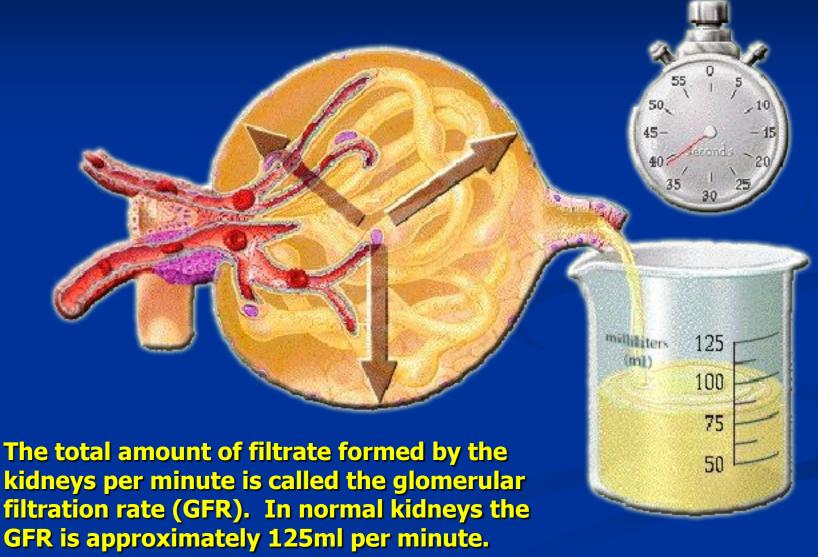

Calculation of net filtration pressure

- Net filtration pressure
 - = 60-18-32=10 mmHg
 - = K_f (P_{GC} P_{BS}) (π GC π BS)
- K_f: Filtration coefficient depend on Filtration membrane
 - permeability
 - Surface area
- Glomerular permeability > 100 x skeletal capillaries permeability

Net Filtration Pressure (NFP)

Net Filtration Pressure 17 mmHg




 P_{GC} – favors filtration = 60mmHg P_{T} – opposes filtration = 15mmHg π_{GC} – opposes filtration = 28mmHg NFP 60mmHg – (15mmHg + 28mmHg) = 17mmHg Dr Sitelbanat

Net filtration pressure

- Net filtration pressure decreases as passing along the glomerular capillary
- Only plasma is filtrated
 → ↑ plasma protein
 conc. → ↑ oncotic
 pressure → ↓ net
 filtration pressure

Glomerular Filtration Rate (GFR)

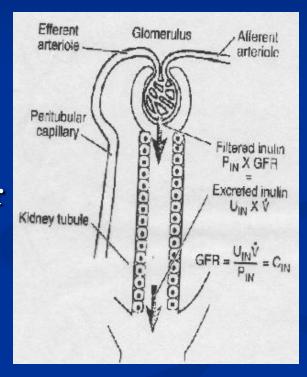
Glomerular filtration rate

- Amount of plasma filtered by all nephrons in both kidneys/unit time
- 125 ml/min
- Kidney function test
- Variation in GFR between different species depend on numbers of nephrons

Measurement of GFR

- Characteristic of substance used
 - Freely filtered (not reabsorbed or secreted)
 - Not metabolized by the kidney
 - Not toxic and stable
 - Not bound to plasma protein
 - Does not change renal plasma flow
- Inulin

Measurement of GFR cont.


Test procedure

- Intravenous loading dose of inulin followed by intravenous infusion of inulin to maintain plasma level constant
- Urine is collected for 15 or 20 min, to measure inulin concentration in urine and urine volume
- Blood sample is taken half way of urine collection to measure inulin concentration

Calculation of GFR

- The amount of inulin excreted = U_{in} x U_v
- The amount of inulin filtered = Pin x GFR
- As inulin is not reabsorbed or excreted both quantity are equal
- \blacksquare P_{in} x GFR = U_{in} x U_v
- $GFR = U_{in} \times U_{v} = ml \setminus min$

Pin

Calculation Of GFR & FF

- $GFR = K_f \times net filtration pressure$
- GFR = $12.5 \times 10 = 125 \text{ ml/min}$
- $K_f \propto GFR (\downarrow K_f \text{ in diabetes } \downarrow GFR)$

Filtration fraction

- The fraction of renal plasma flow that is filtered = GFR/RPF
- **125/625=.2=20%**

25

Factors affecting GFR

Changes in P_{GC}

- \blacksquare $\mathbf{P}_{GC} \propto \mathbf{GFR}$
- Systemic blood pressure
- \blacksquare afferent vasoconstriction \checkmark P_{GC} - \checkmark GFR
- Efferent vasoconstriction ↑ P_{GC} ↑GFR

2. Changes in π_{GC}

- \blacksquare $\pi_{GC} 1/\infty GFR$
- \uparrow π_{GC} \downarrow GFR
 - hemo concentration (dehydration) \uparrow plasma protein concentration $\uparrow \pi_{GC}$
 - \blacksquare \uparrow filtration fraction- $\uparrow \pi_{GC}$

Factors affecting GFR cont.

- 3. Changes in Pbs
 - $Arr P_{BC} 1/\infty GFR$
 - ightharpoonup
 igh
 - urethral obstruction
 - kidney edema
- 4. Changes of filtration coefficient
 - glomerular capillary permeability
 - Changes in surface area
- 5. Changes in renal blood flow

Summary

- 1. Filtration membrane
- 2. Molecular filtration
- 3. Filtration pressures
- 4. Net filtration pressure
- 5. GFR
- 6. Measurement of GFR
- 7. Factor affecting GFR

