Tubular Reabsorption

GuytonDr Sitelbanat Awadalla

Objectives

At the end of this lecture student should be able to describe:

- Mechanism of urine formation
- Renal tubular transport
- Nacl re-absoption in PCT
- Water re-absoption in PCT
- Glucose and amino acid re-absoption in PCT

Tubular Function

Glomerulus

Efferent arteriole

Peritubular capillary

1. Reabsorption

2. Secretion

— Afferent arteriole

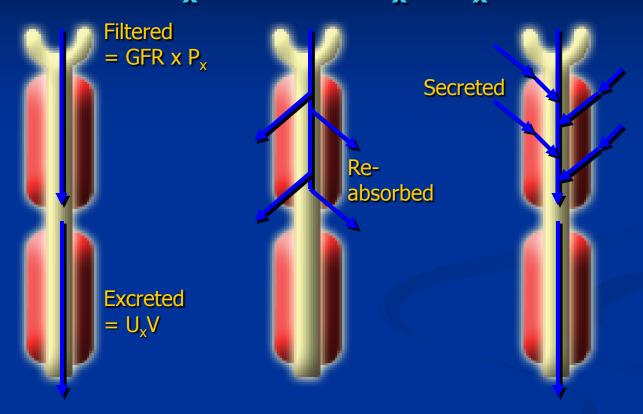
Filtration

Kidney tubule

Excretion

Filtration, Reabsorption and excretion rate

	Filtered	Absorb.	Excreted	A/F %
Glucose (g/d)	180	180	0	100
HCO3 (meq/d)	4320	4318	2	99.98
Na (meq/d)	25560	25410	150	99.4
CI (meq/d)	19440	19260	180	99.1
K (meq/d)	756	664	92	87.7
Urea (g/d)	46.8	23.4	23.4	50
creatinine (meq/d)	1.8	O Dr Sitelbanat	1.8	0


Calculation of tubular reabsorption or secretion from renal clearances

Reabsorption or secretion = Quantity Filtrated — Quantity excreted

Quantity Filtrated = $P_x \times GFR$

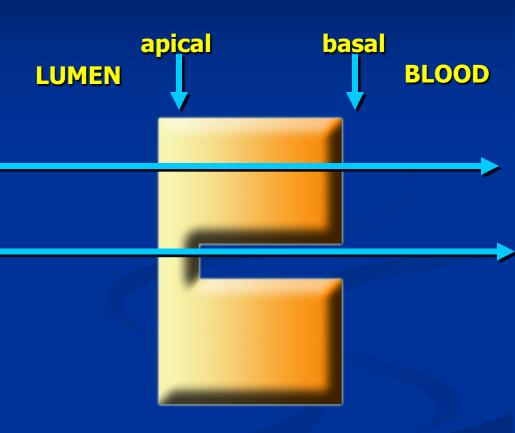
Quantity Excreted = $U_x \times V$

Calculation of renal transport (Tx) $T_{v} = GFR \times P_{v} - U_{v}V$

 $T_x = 0$ e.g. Inulin

 $T_x = positive$ $GFR \times P_x = U_xV GFR \times P_x > U_xV GFR \times P_x < U_xV$ e.g. glucose

 $T_x = negative$ e.g. PAH

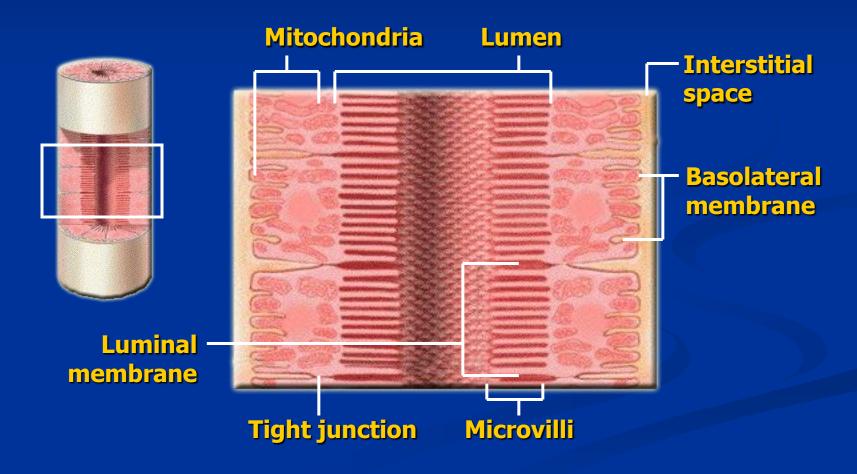

Calculation of Na reabsorption Example

- •Plasma Na concentration = 140 mEq/L
- •GFR (inulin clearance) = 125 ml/min
- •Urine flow rate = 1 ml/min
- Urine concentration of Na= 70 mEq/L

Calculate the amount of Na transported

Types of transport

- Transcellular: Across renal cell
 - Primary active transport
 - Secondary active transport
 - Passive: ion channel
- Paracellular: Through tight junction
 - **Passive diffusion**

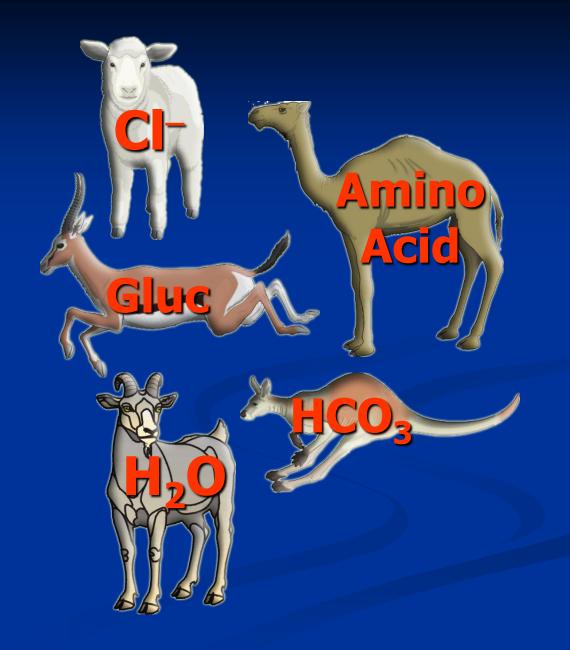


Proximal convoluted tubule

- High capacity for reabsorption
 - Special tubular epithelial cell
 - Metabolically active (lot of mitochondria)
 - Brush border (surface area)
 - Tight junction is not so tight
 - Contain a lot of carrier protein

Cells of the Proximal Convoluted Tubule (PCT)

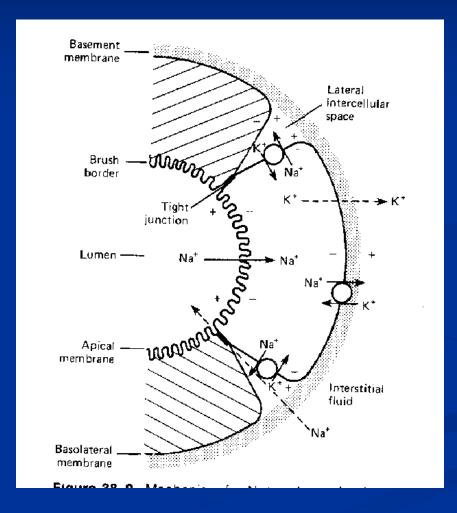
Simple cuboidal cells with brush border Highly permeable to water and many solutes.



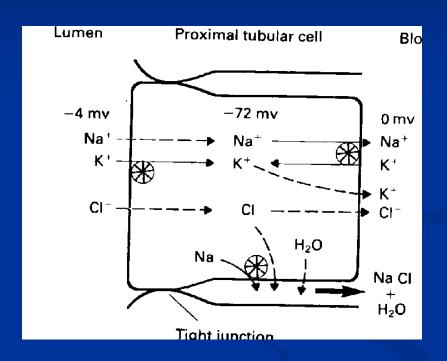
Substances absorbed in PCT

- Tubular absorption
 - Sodium
 - Chloride
 - Glucose
 - Water
 - Amino acid
 - Bicarbonate
 - Phosphate
 - **Urea**

- Secretion
 - PAH
 - H⁺
 - **K**



Sodium reabsorption in PCT


- 65-70% of filtered sodium is reabsorbed in PCT
- Followed by water & chloride
- Iso-osomotic absorption (equal quantity of solute & water)
- Important for the absorption of
 - Glucose
 - Amino acids
 - phosphates

Passage of sodium absorption

Mechanism of sodium reabsorption

- Basolateral membrane
 - Na+/K+ Atpase
 - **3 Na / 2 K**
 - K leak out of the cell
 - **Results in**
 - Low intracellular Na Concentration
 - high peritubular osmolality

Mechanism of sodium reabsorption

- Na enter the cell passively following
 - Electrical difference (inside the cell -70mv, lumen -4mv)
 - Na concentration differences (140 mEq/L to 12mEq/L)
- Na enter the cell across the luminal membrane:
 - Cotransport with glucose, amino acids
 - Na in exchange H (counter transport)
 - Na channel

Chloride reabsorption

 Cl reabsorbed down concentration gradient following the positively charge Na

Dr Sitelbanat

17

Water reabsorption

- 60-70% of filtered water is reabsorped in PCT
 - Active pump of Na from renal cell to peritubular space results in increases the osmolality of peritubular space
 - Drag water by osmosis
- Filterate remain iso-osmotic (~equal quantity of water & solute are absorbed)

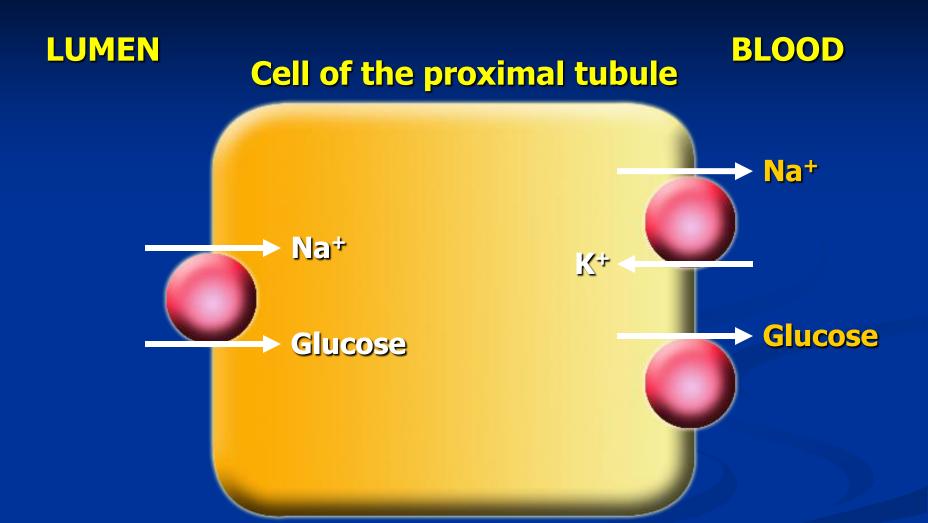
Glomerulo-tubular balance

- Feed back mechanism to keep a fixed percentage of reabsorbed glomerular filtrate
- The higher the filtration in the glomerulus → the higher oncotic pressure in efferent & peritubular capillaries → ↑ reabsorption in PCT

Dr Sitelbanat

19

Glucose reabsorption


- In healthy adult all filtered glucose is reabsorbed and no glucose will appear in urine
- If plasma glucose (P_G) reach 200 mg/dl, glucose appear in the urine this level is the "Renal threshold"
 - 200mg/dl in arterial; 180 mg/dl in venous

Glucose reabsorption

- The amount of reabsorped glucose at very high filtered glucose, remains constant, this is called tubular transport maximum for glucose (Tm_G)= 375 mg/min (female 300mg/min)
- At this maximum transport, all the glucose carriers are saturated and no more glucose can be transported

Mechanism of Glucose reabsorption

- Secondary active transport
- Luminal membrane
 - Cotransport with Na
- Basolateral membrane
 - GLUT 1 & 2

Cellular Mechanism for Glucose Reabsorption

Amino acid reabsorption

- All filtered AAs are reabsorbed in PCT
- Luminal membrane
 - Cotransport with Na
- Basolateral membrane
 - diffusion