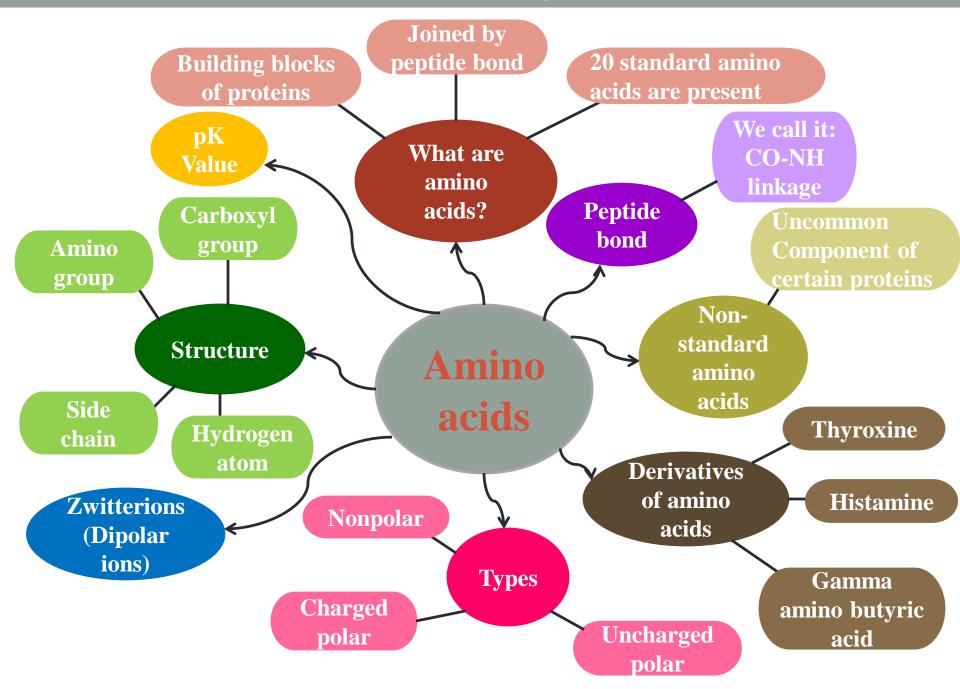
AMINO ACIDS

(Foundation Block)


Color Index:

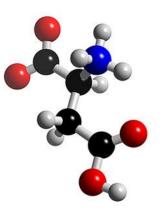
- Pink = Girls
- Blue = Boys
- **Red = Important**

Objectives:

- What are amino acids?
- Structure.
- Types.
- Peptide bond: Building blocks of proteins.
- Non-standard amino acids
- Derivatives of amino acids

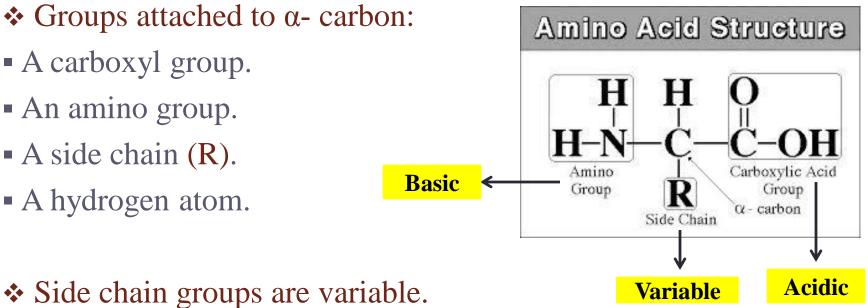
Biochemistry433@hotmail.com

Amino Aids:


*Building blocks of proteins.

N.B: amino acids work in our body like BUFFER. it resists the change of the pH.

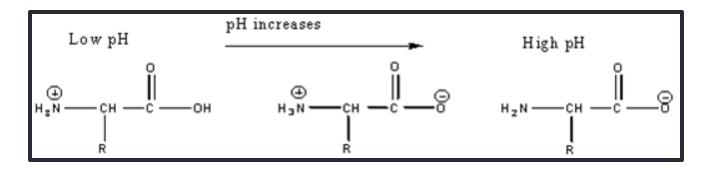
Solution States Stat


*20 standard amino acids present in the mammalian system.

N.B: They are 19 standard amino acids and 1 Imino acid.

Structure of amino acids:

- Groups attached to α carbon:
- A carboxyl group.
- An amino group.
- A side chain (**R**).
- A hydrogen atom.

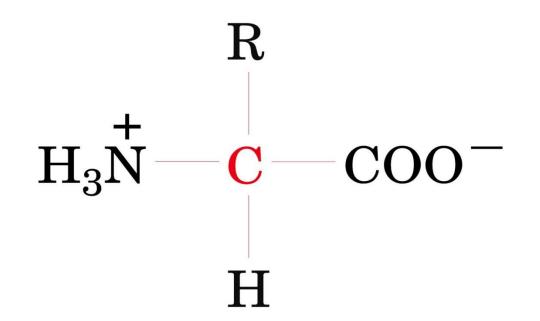


(These determine the different 20 standard amino acids)

Examples:

Glycine:	Alanine:	
In this example we add hydrogen atom (H) to the side chain.	In this example we add methyl group (CH ₃) to the side chain.	
$\mathbf{COO^{-}}$ $\mathbf{H}_{3}\mathbf{N} - \mathbf{C} - \mathbf{H}$ \mathbf{H} \mathbf{H} $\mathbf{Glycine}$	$ \begin{array}{c} \mathbf{NH}_{2} \\ \\ \mathbf{CH}_{3} - \mathbf{C} - \mathbf{COOH} \\ \\ \mathbf{H} \end{array} $	

Amino group and Carboxylic group can be ionized (charged).



The amino and carboxylic groups of amino acids can readily ionize. (gaining or losing a proton).

Low PH ----- high H High PH ----- low H

Zwitterions (Dipolar Ions):

N.B: we are talking about the molecule.

Net charge is zero on the molecule.

Isoelectric point (pI):

N.B: we are talking about the pH of the solution where the zwitterions is present.

- ✤ The pH at which the molecule carries no net charge.
- ✤ In acidic solution-cationic.
- ✤ In alkaline solution-anionic.

Higher pH: anionic (-): alkaline solution. Lower pH: cationic (+): acidic solution.

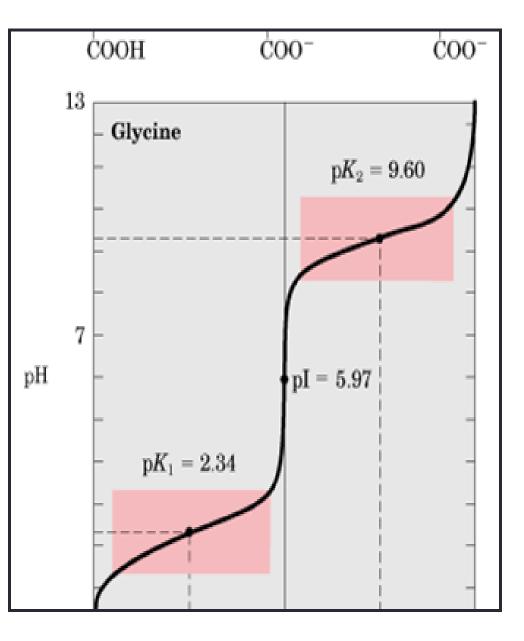
pK Value:

(pKa or Acid Dissociation Constant)

It is the ability of an acid to donate a proton (dissociate).pK: is the pH when the molecule gives it's proton.

In other words: the ability of an acid to donate a proton. (How fast it dissociates).

- Carboxylic group: range of 2.2 (it gives proton even in low pH).
- Amino group: range of 9.4 (you have to rise the pH so it can give proton).


Titration Curve of Glycine:

♦Acting as a <u>buffer</u>: the solution tries to resist a change in pH.

Buffering action is
 <u>maximum</u> around pK and
 <u>minimum</u> at PI.

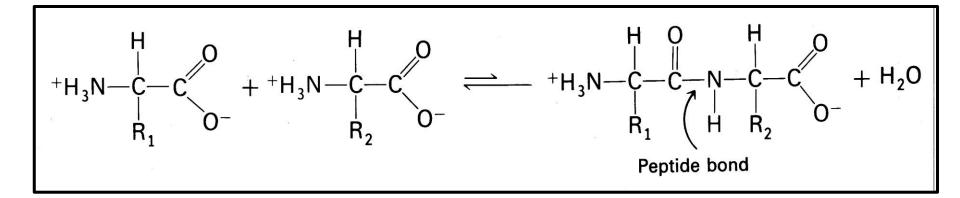
***pK1**: carboxylic group: pH at which 50% is <u>cation</u> and 50% is <u>zwitterion</u>.

♦pK2: amino group: pH at which 50% is <u>anion</u> and 50% is <u>zwitterion</u>.

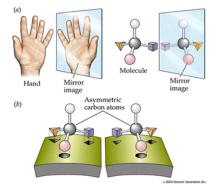
Classification on the basis of side chain: Three major types of amino acids:

Nonpolar	Uncharged polar	Charged polar
(won't mix, side chain doesn't bind or give off protons)	zero net charge at <u>normal</u> pH. (if we change pH they can become charged)	Acidic amino acid — on -R Basic amino acid + on -R
Hydrophobic (Does not love H)	Hydrophilic (Loves H)	Polar Acidic: (have a negative charge on the R-group) (2 types) Aspartic acid , Glutamic acid
Examples: Glycine, Alanine, Valine, Leucine, Isoleucine, Methionine, Phenylalanine, Tryptophan and Proline. <u>Proline</u> is an <u>Imino acid</u> . (because it has a secondary amino group NH2)	Examples: Serine, Threonine, Asparagine, Glutamine, Tyrosine and Cysteine.	Polar Basic: (have a positive charge on the R-group) (3 types) Histidine , Lysine , Arginine

Peptide Bond:


* Amino acids can be polymerized to form chains.

- Amino acids are joined together in a chain by peptide bond (CO-NH linkage)
- * α -carboxyl group of one amino acid reacts with α -amino group of another amino acid.


<u>2 amino acid:</u> dipeptide, <u>3 amino acid:</u> tripeptide, <u>4 amino acid:</u> tetrapeptide, <u>up to 10 amino acid:</u> oligo peptide
<u>10-50 amino acid:</u> polypeptide, <u>more that 50 amino acid:</u> proteins.

N.B: <u>Peptide bond</u>

- <u>Amino acids makes 2</u> bonds but the one at the end makes <u>1</u> bond.
- Free amino group: amino terminus, N-terminus.
- Free carboxylic group: carboxyl terminus, C-terminus.

Optical activity:

- ✤ All amino acids optically active except glycine.
 - They rotate the plane of polarized light in a polarimeter.
- ✤ Optically active molecules are asymmetric:
 - They are not superimposable on their mirror image.
 - Asymmetric means α -C is bonded to four different groups.

N.B: <u>We say a molecule is optically active when it is able to change the direction of the light.</u>

- Glycine contains two hydrogen atoms on α -C.
- The α -C of glycine is not asymmetric.
- Therefore glycine is optically inactive.

D and L amino acids:

***** They are chemically the same.

Found in:	L-Amino acids	D-Amino acids
	Rotate polarized light to the left.	Rotate polarized light to the right.
	1. Natural amino acids.	 Antibiotics, (Like: Gramicidin-S, Actinomycin-D and Valinomycin). Plants Bacterial cell walls.

Non-standard amino acids:

* Some uncommon amino acid residues that are components of certain proteins.

Amino acid derivatives of importance:

***** Neurotransmitters:

- Gamma amino butyric acid (GABA) \rightarrow glutamic acid.
- Dopamine \rightarrow thyrosine.

***** Mediator of allergic reactions:

• Histamine \rightarrow histidine.

***** Thyroid Hormone:

• Thyroxine \rightarrow Tyrosine.

Summary

- *** pK:** is the pH when the molecule it gives it's proton.
- ✤ pI: The pH at which the molecule carries no net charge.

* Classification of amino acids:

- Nonpolar (<u>9 amino acids</u>).
- Uncharged polar (<u>6 amino acids</u>).
- Charged polar (<u>5 amino acids</u>).
- * All amino acids **optically active** except glycine.
- * L-amino acids Rotate polarized light to the left.
 - Found in: Natural amino acids.
- ***D-amino acids** Rotate polarized light to the right.
 - Found in: Antibiotics and plants bacterial cell walls.
- *Amino acid derivatives of importance:
 - Neurotransmitters.
 - Mediator of allergic reactions.
 - Thyroid Hormone.

YouTube links:

Make yourself clear with You Tube Click here

Make yourself clear with You Tube Click here

Make yourself clear with You Tube Click here