

King Saud University Foundation Block

Enzyme & Coenzyme Lecture 7 + 8

Color Index:

Important ⇒ Red Explanation ⇒ Orange Additional ⇒ Purple

Mind Map

Enzymes

- They are biological catalysts محضز that speed up the rate of a reaction without being consumed by the reaction.

- All enzymes are proteins, but not all proteins are enzymes.

Substrate is the substance that enzymes act on, and convert it into **products**.

Classification of Enzymes

Enzymes are classified into 6 classes according to the reaction catalyzed

Classification		Type of Reaction Catalyzed	
1	Oxidoreductases	Oxidation-Reduction reactions	
2	Transferases	Transfer of functional groups	
3	Hydrolases	Hydrolysis reaction	
4	Lyases	Group elimination to form double bonds	
5	Isomerases	Isomerization	
6	Ligases	Bond formation + ATP hydrolysis	

Enzyme Nomenclature (Naming)

Enzyme Nomenclature is based on the rules given by IUBMB (International Union of Biochemistry and Molecular Biology.

EC 3.4.17.1 (Carboxypeptidase)

EC = Enzyme Commission

Class.subclass.subsubclass.Enzyme number

Properties of Enzymes

Enzyme-Substrate Binding

Lock and Key Binding

The enzyme has an active site that fits the exact dimensions of the substrate.

From the beginning the active site is complementary to the shape of substrate.

Induces Fit Binding

In this case, after binding to the substrate, the enzyme changes its shape to fit more perfectly with substrate.

The active is not complementary to the substrate, but when binding happens the active site changes its confirmation according to the substrate.

Transition State: it's a state that reactants pass through, in every chemical reaction, which has greater energy than reactant and products alone. "without enzymes"

Activation Energy (Ea): The deference in energy between the reactants and the transition state + It's the energy required to

- If the activation energy is available, then the reaction can be proceed forming production.

<u>Free Energy GA</u>: The difference in energy between the reactants and the products. ADDITIONAL BUT IMPORTANT TO KNOW.

Enzymes decrease the activation energy, but they don't affect free energy $G\Delta$. "Check the graph"

- Enzymes provide alternative transition state with lower activation energy called <u>Enzyme Substrate Complex</u>, thus it speeds up the reaction.

Enzyme Activity or Velocity

It is the rate of a reaction catalyzed by an enzyme.

Measured in millimole of product formed/Minute/mg of enzyme.

Factors Affecting Enzyme Activity

Temperature	dpH	Concentration of Enzyme [E] and Concentration of Substrate [S]
 Every enzyme has an optimal"perfect" temperature for catalyzing a reaction. At first, the enzyme reaction increase with increasing temperature is very HIGH, enzymes are denatured and become inactive. Most human enzymes have an optimal energy of 37° C. 	 any effect of pH on the ionizable groups in the active site or in the substrate can affect catalysis. Every enzyme has an optimal pH for catalyzing Most enzymes have highest activity between 6 pH and 8 pH Pepsin has highest activity at pH 2 because it works in the stomach which is an acidic medium. The bell-shaped curve 	 -Reaction y ,initially, increases with increasing substrate concentration [S] but when the enzyme reaches saturation, the addition of substrate will not affect enzyme velocity At low substrate concentration [S], the reaction velocity is low. If the substrate concentration is higher than enzyme, the rate of an enzyme reaction will be directly proportional to the concentration of enzyme.

Enzyme Kinetics

Michaelis and Menten first proposed the model of enzyme kinetics "Movement

Pre-steady state kinetics

When an enzyme is mixed with high [S], there is an <u>initial</u> short of period of time (few hundred microseconds) during which intermediates* build up, that leads to the formation of product

Steady State Kinetics

- After initial state, the reaction rate and the concentration of intermediates change **slowly** with time called <u>steady state reaction</u>.

 An intermediate is called steady state when its rate of synthesis is equal to its rate of degradation

The Michaelis Menten Equation:

It describes the relationship of the initial rate of an enzyme to the concentration substrate [S]. It measures the initial velocity (v_o) of an enzyme reaction.

K_m (Michaelis Constant)

is the substrate concentration[S] at which the initial rate is one-half of the maximum rate (½ V_{max})

It is the [S] required to saturate half of all of the active sites of an enzyme $K_{\rm m}$ value of a substrate depends on its affinity with the enzyme

High K_m means low affinity with enzyme (more substrate needed to saturate the enzyme)

Low K_m means high affinity with enzyme (less substrate needed to saturate the enzyme)

Lineweaver-Burk plot

- Also called the double-reciprocal plot, obtained by taking reciprocals of the Michaelis Menten equation
- It is plotted to calculate the Km and Vmax values and to determine the mechanism of action of enzyme inhibitors

	Competitive inhibition	Noncompetitive inhibition	
Inhibitor shape	Inhibitor & substrate are Structural analogue	Inhibitor does not have structural similarity to the substrate	
Competition with substrate	<u>Competes with</u> the substrate for binding <u>at the active</u> site of enzyme	Inhibitor binds to the enzyme at a site <u>away from</u> the substrate binding site (No competition exists between the inhibitor and the substrate).	
Possible equilibria	 E + S ↔ ES → E + P (active) E + I ↔ EI (inactive) 	 ES + I ↔ ESI (inactive) E + I ↔ EI (inactive) 	
Value of V _{max}	<u>Unchanged</u> in the presence and the absence of inhibitor	Decreased by the inhibitor	
Value of K _m	Increased (because substrate and inhibitor compete for binding at the same site)	K_m is unchanged (because the affinity of S for E is unchanged)	
	Higher concentration of substrate is required to achieve half-maximal velocity		

 The term "allosteric" came from Greek word 	Allosteric enzyme regulation	Cooperative binding
"allos" meaning "other"E= EnzymeS= Substrate	Compounds that bind to enzyme other than the catalytic site.	Process by which binding of a ligand to a regulatory site affects binding of the
	Binding of an allosteric modulator causes a change in the conformation of the enzyme	same or of another ligand to the enzyme
Modulator may be Positive: increased E Negative	Change in the binding affinity of enzyme for the substrate	
S affinity(activation)	ibition)	

Enzymatic diagnosis and prognosis of diseases

