

Objectives

- Describe the number, structure, and classification of human chromosomes.
- Explain what a Karyotype is and how it is obtained.

- Describe chromosomal banding and explain its use.
- Describe the process of in situ
 hybridization and the information it
 provides.

"Genetics is all about showcasing human beauty along with high-quality performance."

Bela Karolyi

Gene Expression

For a cell to make a protein, the information from a gene is copied, base by base, from a strand of DNA into a strand of messenger RNA. Messenger RNA travels out of the nucleus into the cytoplasm, to cell organelles called ríbosomes. There, tansfer RNA directs the assembly of amino acids that fold into a completed proteín molecule.

Eukaryotic cell

Genetics433@gmail.com

Cytogenetics:

The study of the <u>structure</u> and <u>function of chromosomes</u> and chromosome <u>behaviour</u> during somatic and germline division

Molecular genetics:

The study of the <u>structure</u> and <u>function of genes</u> at a molecular level and how the genes are <u>transferred</u> from generation to generation.

Comparison of Related Diseases

Human Cytogenetics	Molecular Genetics
Turner's syndrome	Sickle Cell Anemia
Down's syndrom	Hemophillia A
Kleinfelter's syndrome	Colour Blindness

*N.B. Human cytogenetics related to diseases caused by abnormal chromosomal conditions, while molecular genetics is related to diseases caused by mutated genes.

Cytogenetics:

Human Cytogenetics: Involves the <u>study of human</u> <u>chromosomes</u> in health and disease.

Karyotype:

An arrangement that classifies the chromosomes of an organism based on the number, size, shape, and other characteristics of the chromosomes.

This illustration represents a spectral karyotype, named so for the light marks that identify each chromosome.

Karyotyping

Based on:

- 1.the length.
- 2.the position of the centromere.

3.the presence or absence of satellites.

Туре	Illustration
Non-Banded Karyotype	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Banded Karyotype	$\frac{1}{12} \xrightarrow{2} \frac{1}{2} \xrightarrow{1} $
High Resolution Karyotype	11>112

Items in the Description Of Karyotype:

Normal Karyotypes 46, XY 46, XX Abnormal Karyotypes 47, XY, +21 \longrightarrow Down Syndrome 45, XO, Turner Syndrome *47,XY, 21 (down syndrome) is due the increase of number in chromosomes " in males "

*45, XO, (turner syndrome) one X is missing here which causes the abnormality " in females "

Application of Cytogenetics in Laboratory Diagnostic Procedures

Type of Application	Example/notes
Prenatal Diagnosis	Sample can be taken from • Amniotic fluid • Chorionic villi • Cord blood
Mental Retardation	
Birth Defects	
Abnormal Sexual Development	Kleinfelte's syndrome Turner's Syndrome
Infertility/Miscarriages	
Hematologic Disorders	Malignancies: Leukemia Anemia: Sickle Cell Anemia

6

Human Chromosomes

-Human cells contain two sets of chromosomes, one inherited from the mother and one from the father.

-Each set has 23 single chromosomes--22 autosomes and a sex-determining chromosome, either X or Y. The set shown here is from a male, since it contains an X and a Y chromosome; if the chromosome set were from a female, it would contain an X and an X.

14

Centromeric position and arm length:

Centromere location

Middle

Between

middle and end

Close to end

Designation

Metacentric

Submetacentric

Acrocentric

The ratio of the lengths of the two arms is constant for each chromosome.

This ratio is an important parameter for chromosome identification and allows classification of chromosomes into several basic morphologic types: *i-metacentric ii-sub-metacentric iiiacrocentric*

In the human karyotype chromosome pairs 13, 14, 15, 21, 22 are *acrocentric*

NOTE : **Karyotype (def) : is the arrangement of chromosomes in size and shape

Metaphase shape

Centromere

q arm

p arm

Defining Chromosomal Location

How to read and name a specific chromosome : "7" the chromosome number , Q is the arm's letter, 3 is the region, 1 is the band, the last number is the subband. So the Overall definition of this gene's position is 17q31.2

GENETICS

Metaphase chromosomes:

A single complete set of chromosomes. (N=23 for humans)

The 2 sister-chromatids

are principally held together at the centromeric region.

- Each chromosome has a centromere (CEN), region which contains the kinetochore,
- CEN divides the chromosome into two arms: the short arm (p arm) and the long arm (q arm).
- **Each arm terminates in a telomere.**

NOTE : *Here * You have to know the structure of the chromosome

Chromosome Structure Abnormalities

Visualizing Metaphase Chromosomes (Banding)

433

Chromosome 21 trisomy (Down's Syndrome)	Philadephia's Chromosome	Achondroplasia
	$9q_{34,12}$ $9q_$	FGF receptor 3 Mutation site STATI Kinase domains Premarure activation of FGFR3 kinase
Caused by an a extra copy of chromsome 21	Caused by a translocation between chromosome 9 and 22	Caused by a dominant mutaion in FGF receptor 3.
47 XX+21	This translocation can be described as: <u>46, XY, t(9;22)(q34;q11)</u>	FGF (Fibroblast growth factor)-instruct cells not to divide

Fluorescence In-Situ Hybridization (FISH)

FISH of interphase nuclei with a chromosome 21 centromeric probe showing 3 signals consistent with trisomy 21.

FISH of metaphase with a probe for telomere showing signals at the end of each chromatid.

- The chromosomal number is 17, region 2, short arm, band 1 and 2 sub band. What is the formula of the chromosomal locati on?
 - A)17p21.2B)17q21.2C) 17p22.1D) 17q22.1
- The morphologic type which presents satellite is:
 - A) Metacentric B) submetacentric
 - C) acrocentric

HUMAN 4

- What do we called the chromosome 22 when it had translocat Se . ion with 9 chromosome?
 - **B)** Philadelphia chromosome A) Isochromosome
 - C) X chromosome D) ring chromosome
- When the chromosome loses one of it's arms and replaces it AS. with an exact copy of the other arm, this abnormal structure called:
 - A) Inversion

- **B)** translocation
- C) derivative chromosome

D) isochromosome

HUMAN

MCQs

- e simplified as:
- Down syndrome can be simplified as:
 A) XY+21 B) X0
 C) XX D) XY+23
- The two sister chromatids are held together by:
 - A) Centrioles B) Centromeres
 - C) Kinetochores D) Chromosomes
- **√**[∞] Karyotoping is based on:
 - A) Width of the chromosomes B) The number of genes
 - C) Centromere position

D) Both A and B

HUMAN

GENETIC

- These bands of chromosomes are: de la A) Giemsa bands B) Reverse bands C) Normal bands D) Centromere stained
- The topic that focuses on the study of the structure and - Ale function of chromosomes is:
 - A) Molecular Genetics B) Histology
 - **C)** Cytogenetics

- D) Microbiology
- What phrase describes this abnormality: SS .
 - A) Translocation
 - **C)** Inversion
- **B)** Deletion D) insertion

HUMAN

Human Genetics Team

Team leaders :

Layan Al Tawil

Hussain Al Salman

Team members :

Noura Ahmed Sara khaled Alkrashi Nada Al Dammas Maha Al Rajhi Shahad Al Muhaideb Maha Alzahrani Sara Aldokhayel Razan Aldhahri Fahad Alotaibi Salman Al-rwiba'ah Hassan Almalaq Yazeed Al-Ghamdi Mohammed Almana Khalid Al-Anazi

