

Lecture 8

Gram Positive & Gram Negative Bacteria

- Additional Notes
- Important
- Explanation
- Examples

microbiology433@gmail.com

OBJECTIVES:

- To know about the gram stain used for gram positive and gram negative bacteria.
- To differentiate between the cell wall in gram positive and gram negative bacteria.
- Species fall under gram positive and their properties.
- Species fall under gram negative and their properties.

GRAM STAIN:

- Developed in 1884 by the Danish physician Hans Christian Gram.
- An important tool in bacterial taxonomy, distinguishing so-called <u>Gram-positive bacteria</u>, which remain coloured after the staining procedure, from <u>Gram-negative bacteria</u>, which do not retain dye and need to be counter-stained.
- Can be applied to <u>pure cultures</u> of bacteria or to <u>clinical</u> <u>specimens</u>.

CELL WALL

Gram Positive Cell Wall

- Consist of:
 - A thick homogenous sheath of peptidoglycan
 - ✓ 20-80 nm thick
 - Tightly bound acidic polysaccharides
 - Including teichoic acid and lipoteichoic acid
 - ✓ Cell membrane
- Retain crystal violet and stain purple.

Gram Negative Cell Wall

Consist of:

- An outer membrane containing lipopolysaccharide (LPS)
- This shell of peptidpglycan
- ✓ Periplasmic space
- ✓ Inner membrane

 Lose crystal violet and stain pink or red from safranin counterstain.

THIS TABLE IS VERY IMPORTANT !!!

Gram-positive Cocci

- Staphylococci:
 - Catalase-positive.
 - Gram-positive cocci in <u>clusters</u>.
- ✓ Staphylococcus aureus "most important":
 - coagulase-positive most important pathogen.
- Staph. Epidermidis "normal flora in the skin": coagulase negative staphylococci.

• Streptococci:

- Catalase-negative.
- Gram-positive cocci in chains or pairs.
- ✓ Strep. Pyogenes "associated with abscess, and might cause rheumatic fever".
- ✓ Strep. Pneumoniae "a major cause of pneumonia"
- ✓ Viridans-type streps
- Enterococcus faecalis

Gram-positive Bacilli

- Divided to:
 - Non-spore forming
 - <u>Spore forming</u>
 - Aerobic spore:
 - E.g.: Bacillus anthracis⁽¹⁾. that causes anthracis.
 - Anaerobic spore:
 - C. tetani⁽²⁾, Cause: Tetanus.
 - C. perfringens, Cause: Gas gangarene.
 - C. botulinum⁽³⁾, Cause: botulism.
 - C. diphtheriae, Cause: Fever, pharyngitis, cervical LAD "disease of the lymph nodes".

⁽¹⁾Remember that it has the only bacterial capsule that's made of POLYPEPTIDE. ^{(2),(3)}Both anaerobes produce the <u>same toxin</u> but REMEMBER that tetani's toxin inhibits the inhibitory impulses in the brain otherwise botlulinum's toxin will inhibit the release of ACH

Gram-Negative Cocci

- Neisseria gonorrhoeae.
 - ✓ The Gonococcus.
- Neisseria meningitides⁽¹⁾.
 - ✓ The Meningococcus.
- Both Gram-negative intracellular diplococci.
- Moraxella catarrhalis. "can cause infections of the respiratory system, middle ear, eye, central nervous system, and joints of humans".

⁽¹⁾It is considered as potential pathogen in the oropharynx

Gram-Negative Rods

- Enteric Bacteria, they ferment sugars.
- Most important are:
 - \checkmark E. coli⁽¹⁾, "The most normal flora in the body".
 - ✓ Salmonella
 - ✓ Shigella
 - Yersinia and Klebsiella pneumoniae
 - ✓ Proteus
- Fastidious Gram-Negative Rods:
 - ✓ Bordetellapertussis.
 - ✓ Haemophilusinfluenzae⁽²⁾.
 - ✓ Campylobacter jejuni.
 - ✓ Helicobacter pylori.
 - ✓ Legionellapneumophila.
- Anaerobic Gram-Negative Rods:
 - ✓ Bacteroidesfragilis⁽³⁾.
 - ✓ Fusobacterium

⁽¹⁾It is an intestinal flora that produce vit K & B, it is also considered as a source of opportunistic infection.

⁽²⁾It is considered as potential pathogen in the oropharynx.

⁽³⁾It is one of the anaerobes that resist penicillin so instead we should use Metronidazole for its treatment

Non-Gram-stainable bacteria

• Unusual gram-positives:

- ✓ Spirochaetes.
- ✓ Obligate intra-cellular bacteria.
- Unusual gram negative organisms:
 - ✓ Mycoplasmas:
 - Smallest free-living organisms
 - No cell wall
 - E.g.: M. pneumonia, M. genitalium

Sorry for being late to download this lecture. Hopefully we made microbiology easier and more interesting to all of you.

BEST OF LUCK FUTURE DOCTORS

microbiology433@gmail.com