

Oxidative Decarboxylation and Krebs Cycle

Clinical Biochemistry Unit, Pathology Dept. College of Medicine, King Saud University

Oxidative Decarboxylation of Pyruvate

Tricarboxylic Acid Cycle: Krebs Cycle

- Final common pathway for oxidation
- Exclusively in mitochondria
- Major source for ATP
- Mainly catabolic with some anabolic features
- Synthetic reactions (anabolic features): Glucose from amino acids Nonessential amino acids Fatty acids Heme

Krebs Cycle Reactions (1)

Krebs Cycle Reactions (2)

Krebs Cycle Reactions (3)

Krebs Cycle: Energy Yield

Krebs Cycle: Energy Yield

Energy-producing reaction	Number of ATP produced
$3 \text{ NADH} \longrightarrow 3 \text{ NAD}^+$	9
$FADH_2 \longrightarrow FAD$	2
$GDP + P_i \longrightarrow GTP$	1
	12 ATP/acetyl CoA oxidized

Take Home Message

- Pyruvate is oxidatively decarboxylated by PDH to acetyl CoA inside the mitochondria
- Krebs cycle:
 - Final common pathway for the oxidation of carbohydrates, fatty acids and amino acids
 - occurs in the mitochondria
 - > Aerobic
 - > Mainly catabolic, with some anabolic reactions
- The complete oxidation of one glucose molecule results in a net production of 38 ATP molecules

Thank you