# Control of erythropoiesis, iron metabolism, and hemoglobin

TEXTBOOK OF MEDICAL PHYSIOLOGY

GUYTON & HALL 11<sup>TH</sup> EDITION

UNIT VI CHAPTERS 32

### Dr. Mohammed Alotaibi

MRes, PhD (Liverpool, England) Department of Physiology College of Medicine King Saud University



## Objectives of the today's lecture

### At the end of this lecture student should be able to:

- 1. Describe essential elements needed for RBC formation.
- 2. Describe the process of **Vit B12** absorption and its malabsorption.
- 3. Recognize the structure and the function of **hemoglobin**.
- 4. Understand the metabolism of **iron** (absorption, storage and transport).
- 5. Recognize the causes of anemia and polycythemia.

## **Regulation of Erythropoiesis**

- Importance
- Factors affecting Erythropoiesis
  - Tissue Oxygenation
    - Anemia, High Altitudes, heart and lung problems.
    - ERYTHROPOITEN (EPO)

#### The regulation of RBC production and erythropoietin hormone secretion in response to hypoxia



# **Regulation of Erythropoiesis**

- Importance
- Factors affecting Erythropoiesis
  - Tissue Oxygenation
    - Anemia, High Altitudes, heart and lung problems.
    - ERYTHROPOITEN
  - Vitamins
  - Metals
  - Proteins
  - Hormones
  - Other factors/Conditions

# Vitamins

- Vit B<sub>12</sub> & Folic acid
- Essential for formation of thymidine triphosphate
- Essential building block of DNA
- Diminished DNA

Failure of nuclear maturation

Inadequate Erythropoiesis

• Other vitamins : Vit B6, Riboflavin, nicotinic acid, biotin, Vit C, Vit E

# Minerals

#### • Iron

- Formation of hemoglobin
- Deficiency can lead to anaemia

## Copper

- Necessary for Iron metabolism
- Cobalt
  - Forms a part of Vitamin  $\mathbf{B}_{12}$
- Zinc and Manganese

## **Amino acids and hormones**

- Proteins & Amino acids: formation of globin in hemoglobin
- -sever protein deficiency results in anaemia

#### Hormones:

- Testosterone
- Growth hormone
- Thyroid hormone
- Cortisol
- Adrenocorticotrophic hormone (ACTH)

## Vitamin B12 & Folic acid

Important for DNA synthesis and final maturation of RBC.

**Dietary source:** meat, milk, liver, green vegetables.

#### **Deficiency leads to:**

- Failure of nuclear maturation & division
- Abnormally large & oval shape RBC
- Short life span
- Reduced RBC count & Hb
- Macrocytic (megaloblastic) anemia



#### Macrocytic anemia

#### Normal blood film



Note the hypersegmented neurotrophil and also that the RBC are almost as large as the lymphocyte. Finally, note that there are fewer RBCs.

## Malabsorption of Vit. B12

#### Pernicious Anemia

- VB12 absorption needs intrinsic factor secreted by parietal cells of stomach.
- VB12 + intrinsic factor are absorbed in the terminal Ileum.
- Causes of deficiencies:
- Inadequate intake
- Poor absorption due to Intestinal disease

## Iron metabolism (Fe)

 ✓ Iron is needed for the synthesis of haemoglobin, myoglobin, cytochrome oxidase, peroxidase & catalase

- $\checkmark$  Total Iron in the body = 4-5g
  - 65% ..... Hemoglobin
  - 4% ...... In the form of myoglobin
  - 1% ..... other heme-containg proteins
  - 0.1% ...... Is combined with transferrin in the bood plasma
  - 15-30% ..... stored iron in the form of ferritin in the liver, spleen and bone marrow.

## **Iron** absorption

 $\checkmark$  Iron in food mostly in oxidized form (Ferric,  $F^{3+}$ )

 $\checkmark$  Better absorbed in reduced form (Ferrous,  $F^{2+}$ )

 $\checkmark$  Iron in stomach is reduced by gastric acid, Vitamin C.

 $\checkmark$  Rate of iron absorption depend on the amount of iron stored

## Transport and storage of iron

Iron is transported in the plasma in the form of Transferrin (apotransferrin + iron).

Iron is stored in two forms:
 Ferritin (apoferritin + iron)
 Hemosiderin (insoluble complex molecule, in liver, spleen, bone marrow)

\* Daily loss of iron is 0.6 mg in male & 1.3mg/ day in females.

## HEMOGLOBIN (Hb)

Each RBC contains 280 million Hb molecules.
 Hb molecules consist <u>4 chains</u> each formed of heme & polypeptide chain (globin).
 Heme consist of porphyrin ring + iron (F<sup>2+</sup>).



Types of normal Hb:

-Hb A (2 alpha and 2 beta chains) (adult Hb) (98%). - Hb A2 (2 alpha and 2 delta chains) (2%) -Hb F (2 alpha and 2 gamma chains) (Hb of intrauterine life).

-Abnormality in the polypeptide chain – abnormal Hb (hemoglobinopathies) e.g thalassemias, sickle cell (HbS).

## Functions of Hemoglobin

#### ➤ Carriage of O2

- Hb reversibly binds O2 to form

Oxyhemoglobin, affect by pH, temperatre, H+

### Carriage of CO2

- Hb binds CO2 = Carboxyhemaglobin

### Buffer

### **Destruction of RBC**

□ RBC life span in circulation = 120 days.

□ Metabolic active cells.

□ Old cell has a fragile cell membrane, cell will rupture as it passes in narrow capillaries (and spleen).

□ Released Hb is taken up by macrophages in liver, spleen & bone marrow:

- Hb is broken into its component:

Polypeptide—amino acids (protein pool = storage)
 Iron ---- stored in liver and bone marrow as ferrtin
 Heme (Porphyrin)>>—bilirubin>>—secreted by the
 liver into bile. [excess destruction of RBC ---Jaundice]



## ANAEMIAS

### Definition:

- $\circ$  Decrease number of RBC
- Decrease Hb

> Symptoms: Tired, Fatigue, short of breath, heart failure.

### Physiological Causes of anaemia

#### 1.Blood Loss

- -Rapid hemorrhage caused by accident (RBC return to normal 3-6w)
- -Chronic blood loss caused by microcytic hypochromic anaemia (iron)
- 2. Decrease RBC production
- ✓ Nutritional causes:
- Iron deficiency results in microcytic hypochromic anaemia.
- •Vit B12 & Folic acid deficiencies result in megaloblastic anaemia.

✓ Bone marrow failure: destruction by cancer, radiation, and drugs result in Aplastic anaemia.

#### 3. Haemolytic leading to excessive destruction of RBCs

- \* Abnormal cells or Hb
  - Hereditary Spherocytosis anemia
    sickle cells anemia

\*Erythroblastosis fetalis.

# Polycythemia

(Increased number of RBC)

Types:

1. Primary polycythemia (Polycythemia Vera -(Erythremia):

- Uncontrolled RBC production (genetic).

- The RBC count can reach 7-8 millions/ mm<sup>3</sup> and the hematocrit may be 60 to 70%

2.Secondary polycythemia: secondary to hypoxia caused by high altitude (physiological), chronic respiratory or cardiac disease