

Lecture Title: Glycogen Metabolis

Lecture 1

Biochemistry433@hotmail.com

Color index:

Red= important Purple = addition Orange = Explanation

Objectives:

- · Storage of carbohydrates in liver & muscle.
- Carbohydrates storage as glycogen.
- Overview of glycogen synthesis (Glycogenesis).
- Overview of glycogen breakdown (Glycogenolysis).
- Key elements in regulation of both Glycogenolysis and Glycogenesis.

Keywords:

- Glycogen
- Glycogenesis
- Glycogenolysis

Abbreviations

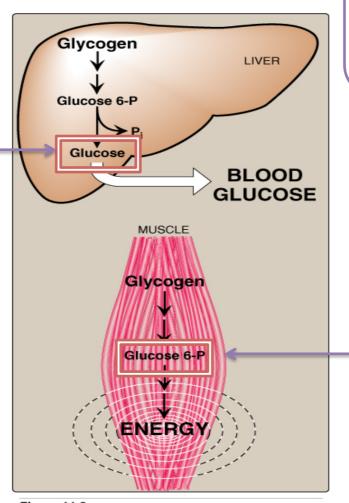
• G-6-P = Glucose 6-Phosphate

Location of glycogen

400g in muscles (1-2% of resting muscles weight)

100g in <u>liver</u> (~10% of wellfed liver)

Function of glycogen


Muscle: fuel reserve (ATP) (during muscular exercise)

Liver: a source for blood glucose (especially during early stages of fasting)

In liver when there is a tendency to hypoglycemia, the breakage of glycogen starts and when glycogen is consumed, gluconeogenesis will take place.

The end product for glycogenolysis in liver is **Glucose**; Because the enzyme glucose-6-phosphatase (convertor enzyme for glucose 6-p to free glucose) is found in the liver.

The end product for glycogenolysis in muscle is Glucose 6-P; Because the enzyme glucose-6-phosphatase can NOT be found in muscles (found only in liver and kidney).

Figure 11.2
Functions of muscle and liver glycogen.

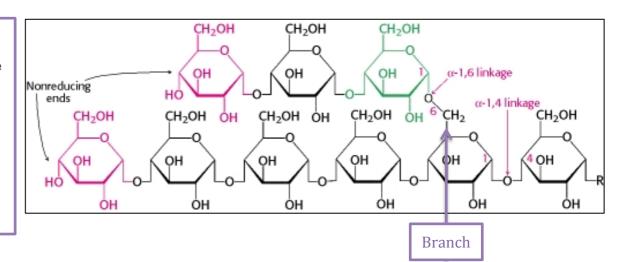
Copyright © 2005 Lippincott Williams & Wilkins

Structure of Glycogen:

Glycogen is a branched chain "Homo-poly-saccharide" exclusively α - D-Glucose.

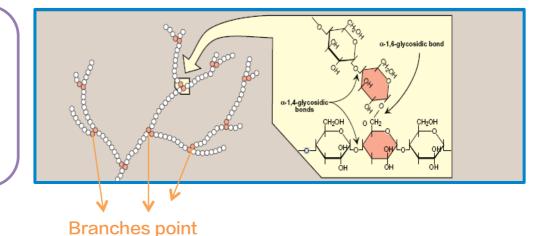
The same

More than 10

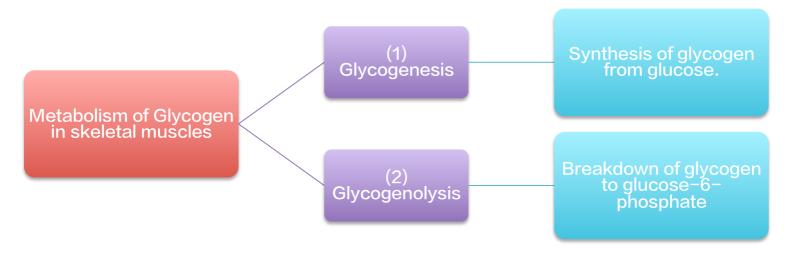

• Glucose residues (compound) are bound by α [1 - 4] glucosidic linkage.

 1^{st} carbon atom binds to 4^{th} carbon atom in the next glucose

• Branches (every 8–10 residue) are linked by α [1–6] glucosidic linkage.


1st carbon atom binds to 6th carbon atom in the next glucose

In this structure of two outer branches of a glycogen molecule, the residues at the non-reducing ends are shown in red and residue that starts a branch is shown in green. The rest of the glycogen molecule is represented by R "side chain".



Why are Carbohydrates stored as glycogen?

- 1) Highly branched and that allows glycogen to be a readily source of glucose.
- 2) Easily add or remove glucose.

 Glycogen present in cytoplasm in the form of granules which contain most of the enzymes necessary for Glycogen synthesis and degradation.

(1) GLYCOGENESIS

- Building blocks: <u>UDP-GLUCOSE</u>.
- Initiation of synthesis by
 - i. Elongation of preexisting glycogen fragment

OR

- ii. The use of glycogen primer (glycogenin)
- ELONGATION by enzyme:
 Glycogen synthase (for α 1-4 linkages)

Glycogen synthase (Ratelimiting enzyme) cannot Glucose 6-phosphate

Phosphoglucomutase

UTP + Glucose 1-phosphate

UDP-glucose
pyrophosphorylase
pyrophosphatase

UDP-glucose
(UDP -)

Prophosphatase

UDP-glucose
(UDP -)

Silvcogen
synthase

UDP-glucose
(UDP -)

Further elongation at the nonreducing ends by glycogen synthase, making $\alpha(1-4)$ bonds.

Further branching, making $\alpha(1-6)$ bonds.

GLYCOGEN

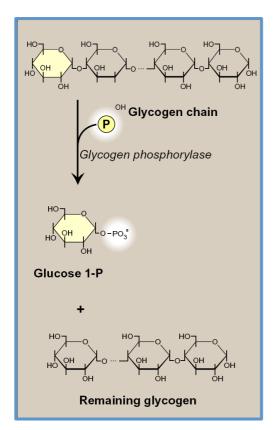
initiate synthesis but only elongates pre-existing glycogen fragment or glycogen primer (glycogenin).

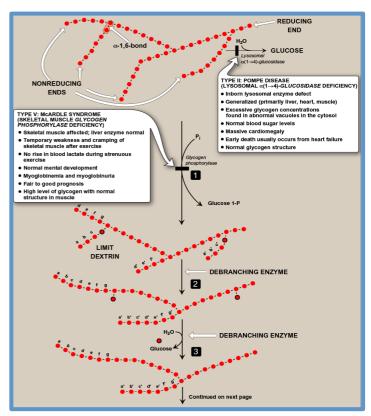
BRANCHING: Branching enzyme (for a1-6 linkages).

Uredines DiPhosphate (UDP) is activator enzyme. It is important step to start

glycogenesis

(2) GLYCOGENOLYSIS


(Breakdown of glycogen in skeletal muscles)


1- Shortening of glycogen chain: by glycogen phosphorylase

- Cleaving of a(1-4) bonds of the glycogen chain producing glucose 1-phosphate
- Glucose 1-phosphate is converted to glucose 6phosphate (by mutase enzyme)

(Pyridoxal phosphate) is co-enzyme for glycogen phosphorylase. Derived from vitamin B.

- 2- Removal of branches: by debranching enzymes
 Cleaving of a(1-6) bonds of the glycogen chain producing free glucose
 (few)
- 3- Fate of glucose 6-phosphate (G-6-P):
 - G-6-P is <u>not</u> converted to free glucose

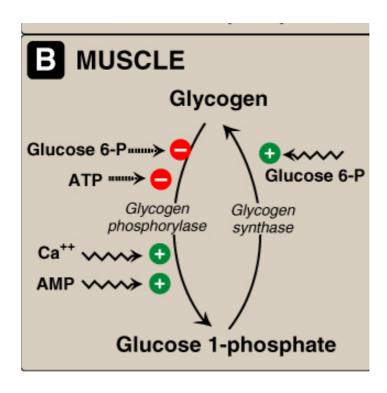
 It is used as a source of energy for skeletal muscles during muscular exercise (by anaerobic glycolysis starting from G-6-P step)

The end-product in muscle is energy by glycolysis of glucose-6-P and the net ATP will be 9 ATPs

UDP-Glucose

elongation of pre-existing OR glycogenin

Glycogen synthase


branching enzyme

Regulation of Glycogen Metabolism

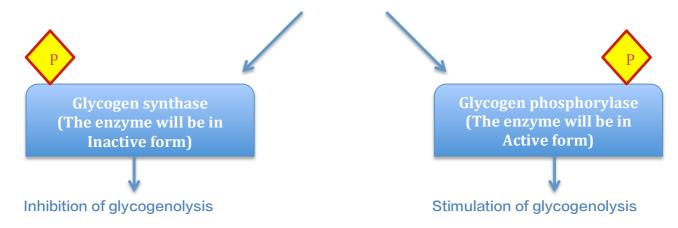
- In skeletal muscles:
 - Glycogen degradation occurs during active exercise.
 - Glycogen synthesis occurs when muscle is at rest.
- Regulation occurs by 2 mechanisms:
 - 1. Allosteric regulation
 - 2. Hormonal regulation (Covalent modification).

1- ALLOSTERIC REGULATION

Glycogen phosphorylase		Glycogen synthase	
Inhibitors	Stimulators	Inhibitors	stimulators
Glucose 6-P	Ca++	-	Glucose 6-P
ATP	AMP		

- Increase of calcium during muscle contraction \rightarrow Formation of Ca²⁺-calmodulin complex
 - → Activation of Ca²⁺-dependent enzymes, e.g., glycogen phosphorylase

2-HORMONAL REGULATION BY EPINEPHRINE


Muscle contraction

Epinephrine release

Skeletal muscle: Epinephrine/receptor binding

Second messenger: cAMP

Response: Enzyme phosphorylation

Glycogen storage diseases:

A group of genetic diseases that result from a defect in an enzyme required for glycogen synthesis or degradation They result in:

Formation of abnormal glycogen structure OR Excessive accumulation of normal glycogen in a specific tissue.

Type V: McARDLE SYBDROME (Skeletal muscle glycogen phosphorylase deficiency)

- Skeletal muscle affected; liver enzyme normal
- Temporary weakness and cramping of skeletal muscle after exercise
- No rise in blood lactate durning strenuous exercise
- Normal mental development
- Myoglobinemia (pigment found in blood which indicates muscle disease) and Myoglobinuria (pigment found in urine which indicates muscle disease)
- Fair to food prognosis

QUIZ

- 1- which one of these has the highest glycogen percentage in it?
 - a) Stomach
 - b) Liver
 - c) Muscles
 - d) Brain

- 2- the function of the liver glycogen is:
- a) Provide ATP for muscles
- b) Production of liver enzymes
- c) Source for blood glucose
- d) None of the following
- 3- The net ATP produced from glycogenlysis in the muscles:
 - a) 9
 - b) 8
 - c) 2
 - d) No energy it's energy consuming.

- 4- The end product for glycogenlysis is:
 - a) Glucose
 - b) Glycogen
 - c) Glucose 6-P
 - d) Glycogen 6-P
- 5- Glucose-1-P is converted to glucose-6-P by:
 - a) Phosphorylation
 - b) Mutase enzyme
 - c) PFK-1
 - d) Pyridoxal phosphate

- 6- Glycogen chain is converted to glucose-1-phosphate by:
- a) Glycogen phosphorylase
- b) Mutase enzyme
- c) Phosphorylation
- d) PFK-1

- 7- Glycogen _____ begins when the muscle is at rest:
- a) Degradation
- b) Synthesis
- c) Carboxylation
- d) Phosphorylation
- 8- Which one of the following is a glycogen storage disease:
- a) Anemia
- b) Mcardle syndrome
- c) Métabolique syndrome
- d) Marfan syndrome

ANSWERS:

- 1- R
- 2- (
- 3- A
- 4- (
- 5- E
- U- A
- 8- R

GOOD LUCK

