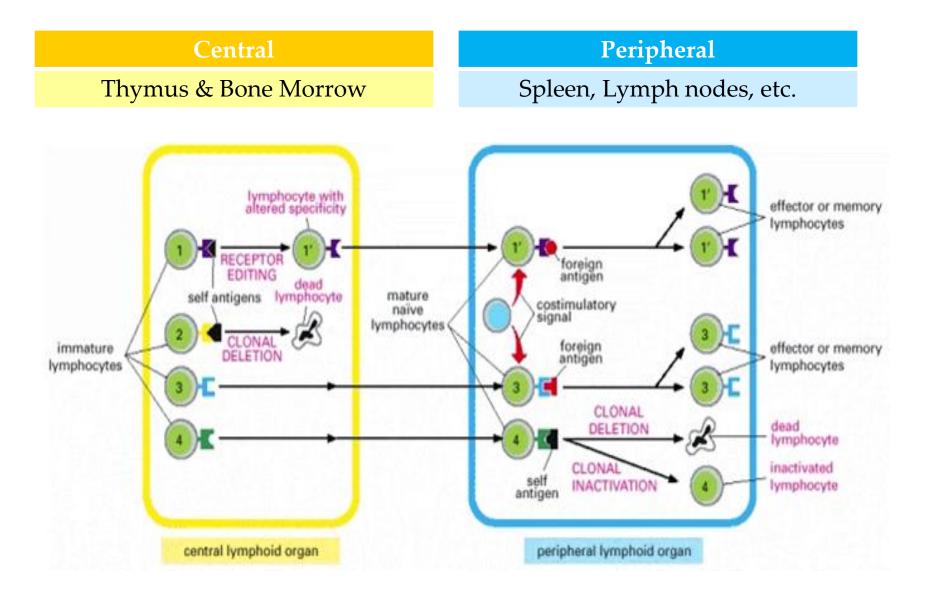


MECHANISMS OF AUTOIMMUNITY LECTURE 1


AUTOIMMUNITY

- A condition that occurs when the immune system mistakenly attacks and destroy the healthy body tissue.
- Immune system has evolved to discriminate between Self and Non-self
- Mediated by auto-reactive T cells and auto-reactive B cells (auto-antibodies)

Tolerance to self is acquired by:

- 1. Deletion (clonal deletion)
- 2. Functional Inactivation (clonal anergy): of developing lymphocytes that possess antigenic receptors with high affinity for self-antigens.

SELF TOLERANCE

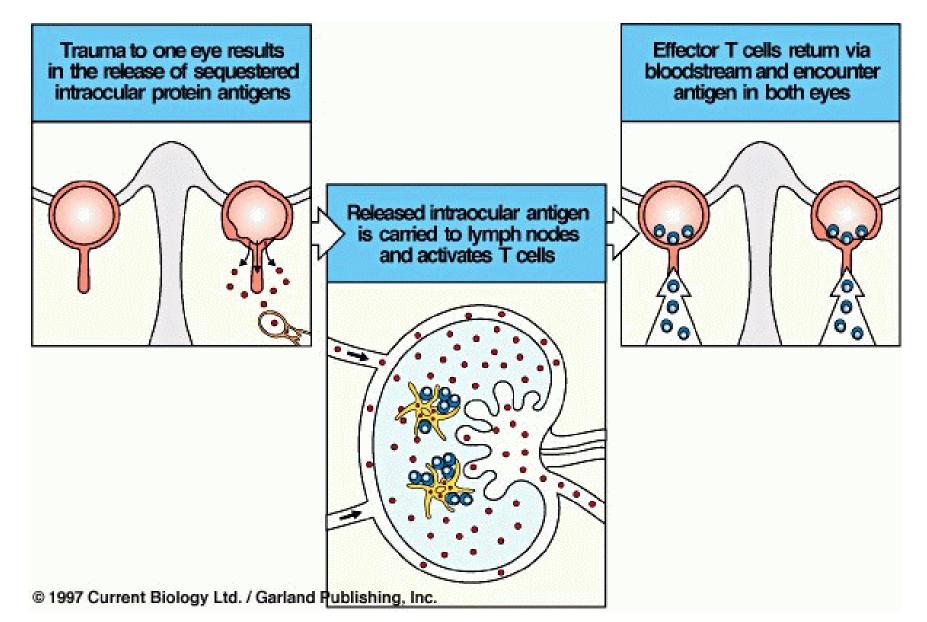
FAILURE OF IMMUNE TOLERANCE (DEVELOPMENT OF AUTOIMMUNITY)

Sequestered Antigens	Molecular Mimicry	Inappropriate <u>Class II MHC</u> Expression On <u>Non-antigen</u> Presenting Cells	Polyclonal B Cell Activation	
Pathogenesis & Characteristics				
 Some self-antigens are sequestered (hidden) in specialized tissues. 	• Viruses and bacteria possess antigenic determinants that are very similar, or even identical, to normal host cell components.	• Class II MHC ordinarily expressed on antigen presenting cells, such as macrophages, dendritic cells and B cells.	• These viruses induce the proliferation of numerous clones of B cells to secrete IgM in the absence of a requirement for CD4 T cell help.	
• These are not seen by the developing immune system – will not induce self-tolerance.	• This phenomenon, known as <i>molecular mimicry</i> , occurs in a wide variety of organisms.	• Abnormal expression of MHC determinants allows the recognition of these auto-antigens by self-reactive T cells.	• Polyclonal activation leads to the activation of self- reactive B cells and autoantibody production.	
sequestered/tissue-specific self-antigens in the	• Molecular mimicry may be the initiating step in a variety of autoimmune diseases.	 This may occur due to the local production of IFN-γ, which is known to increase class II MHC expression on a variety of cells. 	• Patients with infectious mononucleosis (caused by EBV) and AIDS (HIV) have a variety of auto- antibodies.	
		 The inducer of IFN-γ under these circumstances could be a viral infection. 		

Cases and Examples

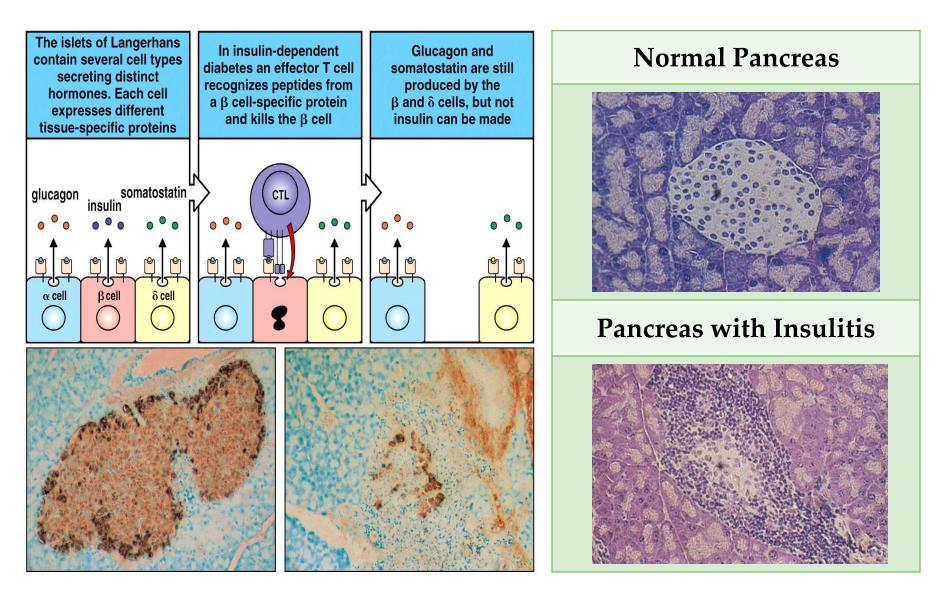
- Myelin basic protein (MBP), associated with MS
- Sperm-associated antigens in some individuals following vasectomy
- Lens and corneal proteins of the eye following infection or trauma
 - Heart muscle antigens following myocardial infarction

This table is not
included, it's just
for clarification


Type I Diabetes: Pancreatic β cells express abnormally high levels of MHC I and MHC II Viruses and bacteria can induce nonspecific polyclonal B cell activation, including:

- Certain gram negative bacteria
 - Herpes simplex virus.
 - Cytomegalovirus
 - Epstein Barr Virus
 - Human immunodeficiency virus (HIV)

TABLE 20-3 MOLECULAR MIMICRY BETWEEN PROTEINS OF INFECTIOUS ORGANISMS AND HUMAN HOST PROTEINS

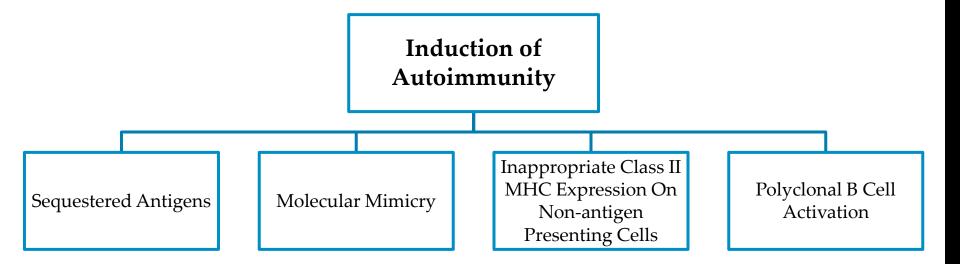

Protein*	Residue [†]	Sequence [‡]
Human cytomegalovirus IE2	79	PDPLGRPDED
HLA-DR molecule	60	VTELGRPDAE
Poliovirus VP2	70	STTKESRGTT
Acetylcholine receptor	176	TVIKESRGTK
Papilloma virus E2	76	SLHLESLKDS
Insulin receptor	66	VYGLESLKDL
Rabies virus glycoprotein	147	TKESLVIIS
Insulin receptor	764	NKESLVISE

SYMPATHETIC OPHTHALMIA

TYPE I DIABETES

Pancreatic β cells express abnormally high levels of MHC I and MHC II

Hormonal Factors


- About 90% autoimmune diseases occur in women, but the causes unknown.
- In animals models estrogen can induce B cells to enhance formation of anti-DNA antibodies.
- SLE (Systemic Lupus Erythematous) either appears or exacerbates during pregnancy.

Drug Induced Lupus Erythematosus

- Lupus Erythematosus like syndrome develops inpatients receiving a variety of drugs such as
- Hydralazine (used for hypertension)
- Procainamide
- Isoniazid
- Penicillin
- Many are associated with the development of anti-nuclear antibodies (ANAs)
- Renal and CNS involvement is uncommon
- *Anti-histone* antibodies are frequently present .

REMEMBER

- Immunological Tolerance against self antigens is what keeps us healthy.
- Autoimmune diseases occur when immunological tolerance to self antigens in our body is disturbed.
- Certain autoimmune diseases are more common in female.

