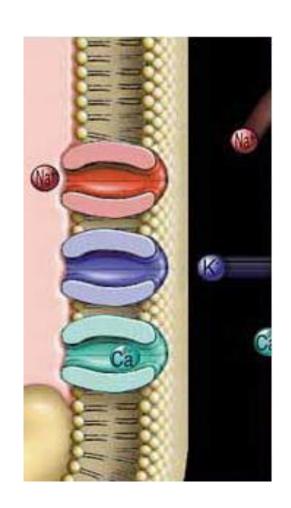
Resting Membrane Potential (Voltage)


TEXTBOOK OF MEDICAL PHYSIOLOGY

GUYTON & HALL 11TH EDITION

UNIT II CHAPTER 5

Dr. Mohammed Alotaibi

MRes, PhD (Liverpool, England)
Department of Physiology
College of Medicine
King Saud University

RESTING MEMBRANE POTENTIAL OBJECTIVES

By the end of this lecture, the student should be able to:

- •Identify and describe different potentials & types of membrane ionic channels & equal or unequal distribution of ions across the membrane
- Identify cell membrane creating concentration and electrical gradients.
- Identify and describe diffusion and equilibrium potential
- Apply Nernst equation to calculate equilibrium potential.
- Identify resting membrane potential (RMP)
- describe genesis of resting membrane potential (RMP) and appreciate the effect of changes in ionic composition and/or permeability on genesis of RMP and the role of ions channels, and Na+ K+ pump
- Identify voltmeter to measure very small membrane potential difference between inside & outside as resting membrane potential.

Q: What are Excitable tissues?

A: They are nerve and muscle

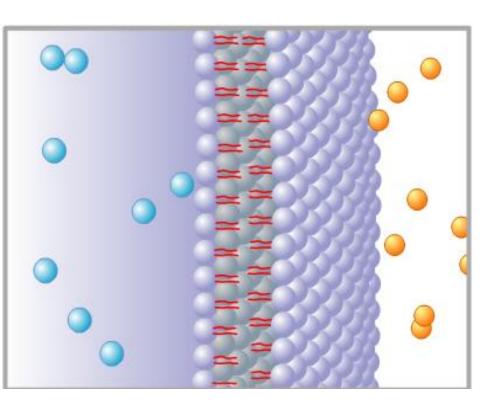
Q: What property do excitable tissues have that makes them different from other body tissues?

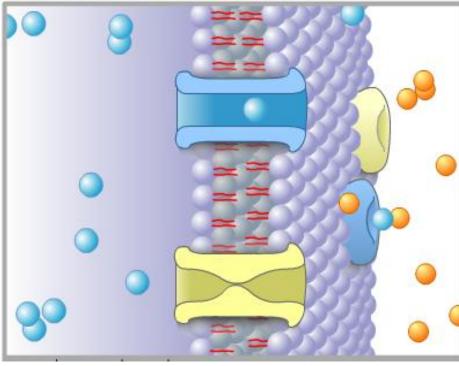
A: Their membrane acts as an electric capacitor storing opposite charges on the opposite sides of the membrane. This will create:

❖ Resting membrane potential(RMP) of high value (-70 to -90 mV) compared to other body cells (in RBC, for example MP= -5 mV).

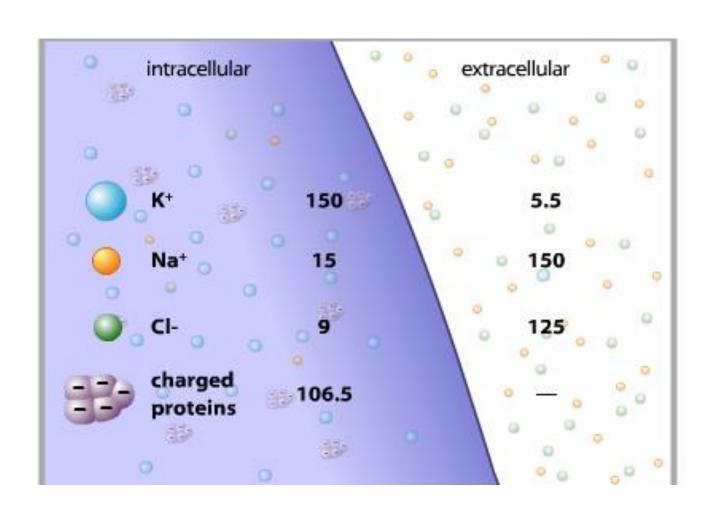
This high RMP makes the nerve or muscle membrane function as a capacitor, that can "discharge", يفرغ producing large voltage changes (action potentials).

Q: What is the membrane potential (MP) الجهد الغشائي ? الجهد الغشائي ? It is the difference in potential (voltage) between the inner side & outer side of the membrane (nerve or muscle membranes)

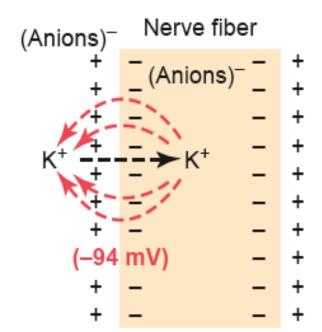

Q: What are the states of MP?


- (1) Resting Membrane Potential (RMP): value of MP in a "resting" state (unstimulated excitable membrane). It ranges between -70 and -90 mV in different excitable tissue cells, in large myelinated nerves = -90 mV
- (2) Graded Potential (Local Response): MP in a stimulated cell that is producing a local, non-propagated potential غير منتشر (an electrical change which is measurable only in the immediate vicinity منطقة مجاوره of the cell but not far from it).
- (3) Action potential (AP): MP in case of a nerve that is generating a propagated منتشر electrical potential after stimulation by effective stimulus (an electrical potential which can be measured even at long distances far from the cell-body of the nerve)

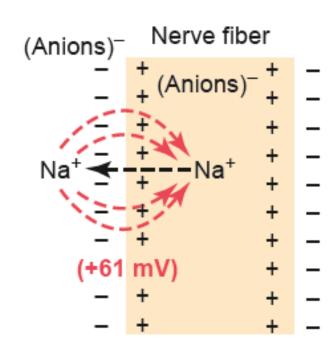
Q: What are the types of membrane ionic channels?


- (1) Leak (בייעי Diffusion, Passive) channels: Pores in the cell-membrane which are open all the time, therefore ions diffuse through them according to the ion Concentration Gradient.
- (2) Voltage-gated channels: قنوات ذات بوابات تعمل بالجهد الكهربى الكهربى open when the cell-membrane is electrically activated.
- (3) Chemically-gated (ligand-gated) channels: open by chemical neurotransmitters at neuromuscular junctions & synapses) connections b/w neurons).

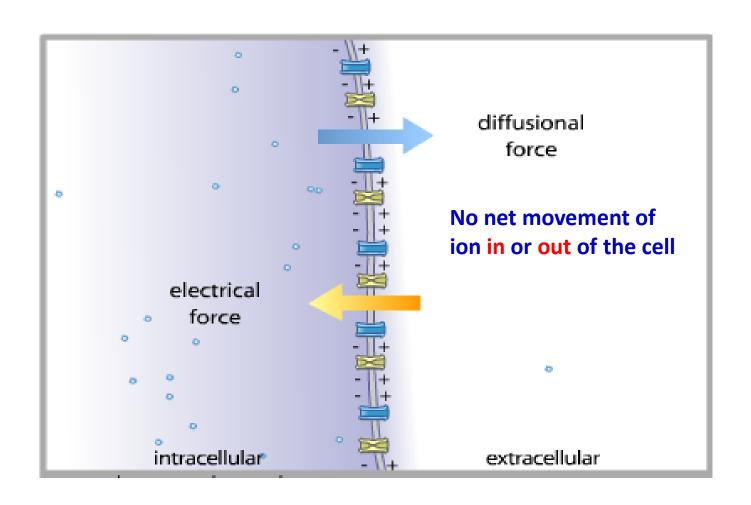
Cell Membrane


Ion Concentration

Basic physics of membrane potential


Diffusion (Concentration) Potential

- -Nerve has semi-permeable membrane separating the ECF from the ICF.
- ➤ <u>K+ is high inside</u> the nerve membrane & <u>low outside</u> → therefore potassium continuously diffuses through the K+ leak channels from inside the cell to outside.
- -So diffusion of K+ ions through membrane occurs from high conc inside to outside carrying +ve charge with it → build up of electropositivity outside & electronegativity inside



Diffusion (Concentration) Potential

➤ Na+ is high outside membrane & very low inside membrane, so the direction of the Na+ chemical (concentration gradient) gradient is inward \rightarrow and sodium continuously diffuses through the Na+ leak channels from outside (the extracellular fluid, ECF) to inside the cell (the intracellular fluid, ICF). \rightarrow build up of electronegativity outside & electropositivity inside.

Opposing Forces Acting on Ions

NERNST EQUATION

-The Potassium Nernst (Equilibrium) Potential

•- Nernst calculated the level of concentration potential of ions across the membrane that prevent net diffusion of ions to inside or outside

Nernst made a hypothesis which said that if we suppose that

- (1) the ECF and ICF contained ONLY potassium ion,
- (2) and that the cell-membrane was freely permeable to K+
- → then K+ will diffuse down its concentration (chemical) gradient (via the K+ leak channels) from inside the cell to outside, carrying with it +ve charges to the outside,
- -This progressively increasing the negativity on the inner side of the membrane because we are losing +ve charges from inside).
- •At this goes on and on, negative charges build inside, an opposing negative electrical potential, tending to prevent the exit of the +ve potassium ions (force tends to keep K+ inside).

This negative electrical potential will grow INSIDE until it becomes strong enough to balance and counteract مضادة وتبطل the concentration gradient which tends to push K+ OUTSIDE

*When this electrical gradient (electrical force), which tends to keep K+ inside equals (=), the concentration gradient (which tends to push K+ outside) → there will be no net K+ movement across the membrane .

The membrane potential (MP) in that case is <u>called:-</u>
Nernst Potential for K+ (or K+ Equilibrium or Diffusion Potential)

<u>It equals = -94 mV</u> (The -ve charge always refers to the inside of the cell relative to the outside)

(This value was calculated by Nernst equation)

E.M.F (mV) = +61 log K+ Conc. Inside = -94 mV K+

Conc outside

The SODIUM Nernst (Equilibrium) Potential

Nernst made a hypothesis which said that if we suppose that:-

- (1) the ECF and ICF contained ONLY sodium ions,
- (2) and that the nerve-membrane was freely permeable to Na+
- → then Na+ will diffuse down its concentration gradient to the Inside of the cell, carrying with it +ve charges, and progressively decreasing the <u>negativity</u> on the inner side of the membrane.
- -As this goes on and on , and as the positive charges build inside , an opposing Electrical Potential begins to develop , tending to prevent the +ve Na+ ions from entering.

This electrical potential will grow until it becomes strong enough to balance and counteract the concentration gradient which tends to push Na+ inside.

When this electrical gradient (force), which tends to drive (PUSH) Na+ outside equals = the concentration gradient (which tends to push Na+ in) -> there will be no Na+ movement across the membrane.

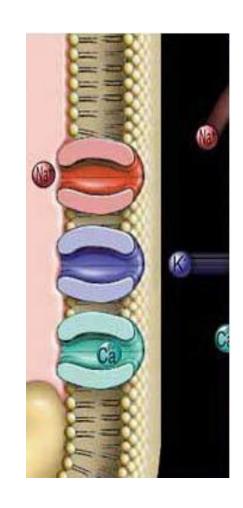
The MP potential in that case is <u>called:</u>

Nernst Potential for Na+ (or Na+ Equilibrium or Diffusion Potential) = +61 mV . (The charge always refers to the inside of the cell)

What determines the magnitude (value) of the Equilibrium (Nernst) Potential?

- •The ratio of the ion concentration on the two sides of the membrane (inside&outside).
- •The value of this potential & EMF can be determined by :

Nernst potential = electromotive force (EMF)

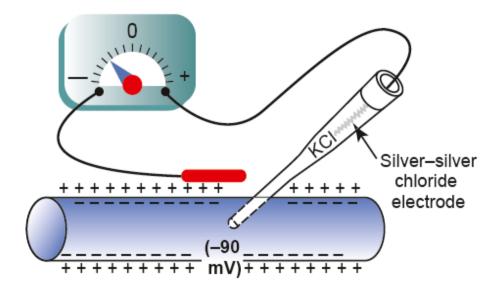

EMF (mV) = ±61 x log <u>lon conc. Inside</u>

lon conc. outside

-The greater the ratio (it means ion conc. inside is higher than outside) the greater the force for ions to diffuse in one direction (from inside to outside)

For K = -94 mv & for Na = +61 mv ((it is –ve for K + ve for K

THE RESTING MEMBRANE POTENTIAL OF NERVES

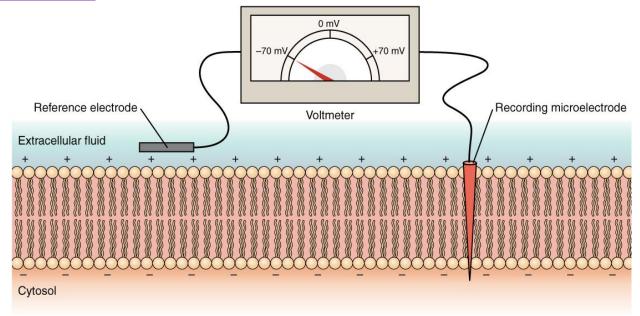


Measuring membrane potential

VOLTMETER

To measure very small membrane potential difference between inside & outside as resting membrane potential. How?

•-A small filled pipette containing electrolyte solution is inserted inside the nerve fiber & another electrode is placed in the outside & membrane potential difference between inside & outside is measured using the voltmeter.


RESTING MEMBRANE POTENTIAL

الجهد الكهربائي الغشائي في حالة عدم النشاط

Def:- It is a potential difference across cell membrane during rest (without stimulation)

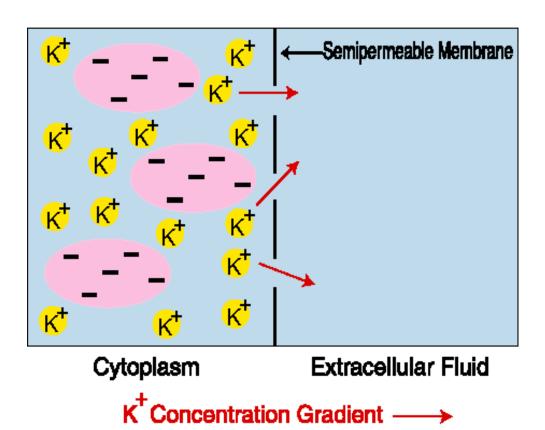
Value:- -90 mV in large nerve fibers (-ve inside) (ranges between -70 mV TO -90 mV) (the -ve or +ve sign referes to the inside of the membrane)

-The membrane is polarized

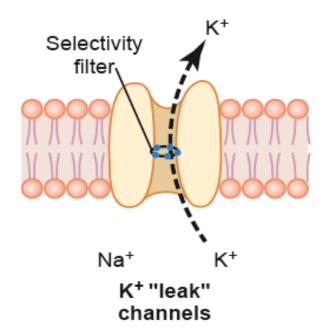
•Q1: What are the factors that make the inside of the cell negative?

Depend mainly on transport properties of resting membrane, the factors that make the inside of the cell negative:

- 1- Contribution of K & Na diffusion potential through Na & K leak channels of nerve membrane
- 2- Active transport of Na & K ions (Na/K pump)
- 3- Negative ions inside membrane as proteins & phosphate sulphate


Origin of RMP:

1- Contribution of K diffusion potential:-


N.B/ K diffusion contributes far more to membrane potential than Na diffusion .

At rest , K inside is 35 times higher than outside
K+ leak channels → more K+ diffuses to outside than Na+ to inside ,
because K leak channels are far more permeable to K than Na about 50100 time due to small size of K molecules → more potassium lost than
sodium gained → net loss of +ve ions from inside the cell → more
negative inside (net K OUTFLUX TO OUTSIDE causing -ve inside)

- Applying Nernst Equation:-
- -K inside is 35 times higher than outside (35/1)
- Nernst potential = 61 x log 35/1 (1.54) = -94 mV, (if K is the only ion act on membrane \rightarrow RMP = -94 mv with negativity inside the nerve)

Outside

2- Contribution of Na diffusion potential:-

•Na leak channels:- have Slight permeability to Na ions from outside to inside.

- •- Nernst potential = + 61 x log (Na inside/Na outside = 0.1) =
- $+ 61 \times \log 0.1 = + 61 \text{ mV}$
- -Nernst potential for Na inside membrane = + 61mV

(if Na is the only ion acting on the membrane \rightarrow RMP = ± 61 mV

with positivity inside the nerve

- Na diffusion potential = + 61mv & that of K = 94 mv
- -using this values in Goldman equation

(To calculate diffusion potential when membrane permeable for

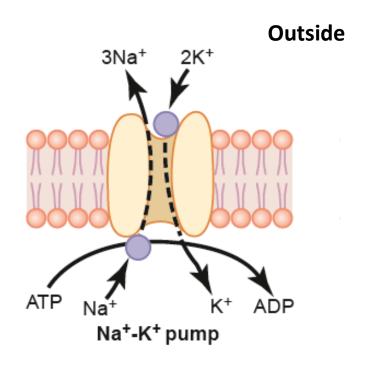
several ions) EMF (millivolts)

$$= -61 \times \log \frac{C_{\text{Na}_{i}^{+}}P_{\text{Na}^{+}} + C_{\text{K}_{i}^{+}}P_{\text{K}^{+}} + C_{\text{Cl}_{o}^{-}}P_{\text{Cl}^{-}}}{C_{\text{Na}_{o}^{+}}P_{\text{Na}^{+}} + C_{\text{K}_{o}^{+}}P_{\text{K}^{+}} + C_{\text{Cl}_{i}^{-}}P_{\text{Cl}^{-}}}$$

- ** Net value of the internal membrane potential of about -86 mV
- N.B/ almost all of this determined by K diffusion
- (because membrane is 100 times permeable to K than to Na)
- •i.e. Potassium potential has the <u>upper hand</u>.

3- Contribution of Na/K PUMP:-

- This is a powerful *electrogenic pump* on the cell membrane.
- It Pump 3 Na to outside & 2 K to inside, causing → net loss of +ve ions ,loss of + ve charge from inside , create negativity about 4mV inside


The Na/K pump also causes large concentration gradients for sodium and potassium across the resting nerve membrane. These gradients are:

Na + (outside): 142 mEq/L

Na + (inside): 14 mEq/L

K + (outside): 4 mEq/L

K + (inside): 140 mEq/L

-So <u>NET MEMBRANE POTENTIAL</u> will be :-

Diffusion potential (caused by K & Na diffusion) + Electrogenic Na/K pump

(-86 mV) + (-4 mV) = -90 mV

4- Effect of Large intracellular anions(negative ions) (proteins, sulphates & phosphates), very low effect.