

LECTURE 1

IMMUNOLOGY OF ASTHMA

"IT'S ALL ABOUT INFLAMMATION" – DR. ZAHID SHAKOOR

OBJECTIVES

- To the difference between **extrinsic and intrinsic** asthma.
- To be familiar with types of **allergens** and their role in allergic sensitization.
- To understand the **inflammatory processes** operating in allergic asthma.
- To know about the **airway remodeling**.

VIDEO

Mechanism of Allergy

http://www.youtube.com/watch?v=-m1e5r8BP9U

Watch it, it's very short.

Clinical Features	Symptoms
Episodes of <i>reversible</i> airway obstruction	Breathlessness
Increase bronchial reactivity Airway inflammation	Wheezing
	Persistent cough
	Chest tightness

AIRWAY OBSTRUCTION

Bronchial Asthma has:

- Thick mucosa (mucosal membrane)
- Inflammatory reaction
- Bronchial spasm (constricted muscles)

CLASSIFICATION

	Intrinsic (non-atopic)	Extrinsic (atopic)
Cause	Unknown	Allergy
Percentage of Asthmatics	10-33%	60-90% Children 50% Adults
Target Patients	Elderly	All
Skin Test Result	Negative	Positive (immediate)
Serum IgE Levels	Normal	High
Clinical/Family History	None	Yes
Severity	More severe	Less severe

Note: The symptoms of both types are the same.

ALLERGENS

INDOOR

- 1. Dust mites
- 2. Pets (cat fur & dander)
- 3. Insects (cockroaches)
- 4. Fungal spores (mold)

1. Grass, tree & weed pollens

OUTDOOR

- 2. Fungal spores
 - (e.g. Alternaria)

Allergen sensitization is linked to the risk of developing asthma

INDUCTION OF ALLERGIC INFLAMMATION

• In Predisposed Individuals:

First encounter with allergens stimulates production of allergen specific *IgE antibodies* by B cells (allergic sensitization)

• Subsequently:

Inhaled allergens activate *sub-mucosal mast cells* in the lower airways resulting in release of mediators instantly causing:

- Recruitment of eosinophils & pro-inflammatory cells
- Bronchoconstriction

MECHANISM OF ACTION

RESPONSE TO ALLERGEN

EARLY PHASE

- 1. Occurs within minutes
- 2. Manifests clinically as:
- Bronchial constriction
- Airway edema
- Mucus plugging
- Is reversible and responds to <u>bronchodilators</u>

LATE PHASE

- 1. Appears <u>4 to 10 hours</u> later
- 2. Results from infiltration by inflammatory cells.
- 3. Activation of lymphocytes& eosinophils
- Responds to <u>steroids</u> (Anti-inflammatory drugs)

TH2 CELLS & ROLE OF CYTOKINES

- Allergens cause T-cells to transform into TH2 cells
- TH2 secrete cytokines (IL-4,5,9,13) which promote:

- Production of IgE by B cells
- Eosinophil attraction and infiltration
- Airway inflammation
- Increased bronchial reactivity

ROLES OF INTERLEUKINS

IL-4	IL-5	IL-9	IL-13
Regulates isotype switching in B cells to lgE	Induces increased production, terminal differentiation & activation of eosinophils Release of eosinophils from the bone marrow into circulation	Associated with bronchial hyper- responsiveness	Induces inflammation
Induces MHC II on antigen-presenting cells		In mice it increases: • Lung eosinophilia • Serum IgE levels	Stimulates mucus hyper-secretion
Induces adhesion molecule expression		Both are clinical features of asthma	Induces sub- epithelial fibrosis
Activate mast cells and eosinophils	B-cell growth factor and increases Ig secretion		

 \mathbf{m}

ROLES OF EOSINOPHILS

- Eosinophils initiate asthmatic symptoms by causing tissue damage in the airways of the lungs.
- Production of eosinophils is inhibited by <u>IL-10</u>.

ROLES OF REGULATORY T CELLS

• Regulatory T cells suppress the effector mechanisms that induce asthmatic symptoms.

• Asthmatics may lack functional regulatory T cells that can inhibit an asthmatic response.

Note: Regulatory T-cells keep the balance.

AIRWAY INFLAMMATION

Activation of inflammatory cells (mast cells, eosinophils) is a major inducer of 'Airway Inflammation'.

Increased Bronchial Reactivity (Bronchial Hyperresponsiveness)

Airway Remodeling

INCREASED AIRWAY REACTIVITY

Outcome:

It predisposes patients to develop asthma attacks on exposure to nonspecific irritants.

Products of the inflammatory cells act on :

- 1. Airway smooth muscle cells
- 2. Lung fibroblasts
- 3. Mucous glands

They cause Airway Remodeling

AIRWAY REMODELING

Outcome:

Can ultimately lead to fibrosis and irreversible airway obstruction in some patients .

REMEMBER

- 1. Asthma is characterized by episodic reversible airway obstruction.
- 2. Classified in 2 types: intrinsic & extrinsic
- 3. In the extrinsic type allergens drive T-cells into Th2 pattern.
- 4. Airway inflammation is a hallmark finding in the asthmatic lung.
- Inflammatory cells lead to increased bronchial reactions
 & airway remodeling which irreversible.

1- In the late response, which the drug should the patient take ?

А	- Steroid	B- Paracete	emol	C- NSAIDs
2- Eosinophils are inhibited by ?				
A- IL	5	B- IL-9	C- IL-4	D- IL-10
3- Eosinophils are produced by ?				
A- IL	-5	B- IL-9	C- IL-4	D- IL-10
4-Which type of allergen is cockroach?				

A- Indoor allergen B- Outdoor allergen C- Inflammatory

Noura Ahmed	Musab AlMasry
Rheema AlFadhil	Fares AlFawwaz
Zhour AlHedyan	Mohammed AlShammari
Ebtesam AlAteeg	Hamad AlDossari
Wafa AlQarni	