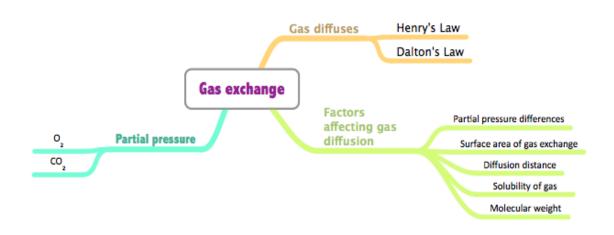


Gas Transfer (Diffusion of O₂ and co₂)

@PhysiologyTeam

Pht433@gmail.com


Respiratory

Block

Objectives:

- 1-Define partial pressure of a gas, how is influenced by altitude.
- 2- Understand that the pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases (Dalton's Law
- 3- Understand that gases in a liquid diffuse from higher partial pressure to lower partial pressure (Henry's Law)
- 4- Describe the factors that determine the concentration of a gas in a liquid
- 5- Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through).
- 6- know the various factors determing gas transfer: surface area, thickness, partial pressure difference and diffusion coefficient of gas.
- 7- State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary.

Mind Map:

GAS EXCHANGE THROUGH THE RESPIRATORY MEMBRANE:

Pressure is caused by the constant impact of kinetically moving molecules against a surface

The rate of diffusion of each of these gases is <u>directly proportional</u> <u>to</u> the partial pressure of the gas.

Remember that

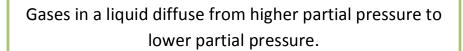
After ventilation the next step is the a process called [diffusion of oxygen and carbon dioxide]

Diffusion depends on the <u>difference in</u> <u>the pressure</u>, The pressure of each gas alone is called partial pressure (P)

DIFFUSION AND FACTORS AFFECTING GAS DIFFUSION:

Diffusion is a process leading to equalization of oxygen and carbon dioxide concentrations between two compartments (alveolus and pulmonary blood capillary)

FACTORS AFFECTING GAS DIFFUSION		
Formula	$D \alpha \frac{\Delta P \times A \times S}{d \times \sqrt{MW}}$	
Factors	 P: Partial pressure differences A: Surface area for gas exchange D: Diffusion distance MW: Molecular weight and (S) solubility of gas 	
Diffusion coefficient of the gas	S √MW The importance of it:	This part of equation is related to the gas. ✓ Oxygen = 1.0 ✓ Carbon dioxide =20.0 ✓ Nitrogen =0.53. ❖ The remaining values (P,A,d)related to the membrane. The relative rates at which different gases at the same pressure level will diffuse are proportional to their diffusion coefficient
Note that:	 ✓ O₂ has lower molecular weight than CO₂, But CO₂ is 24 times more soluble than O₂ ✓ Net result: CO₂ diffusion approx. 20 times faster than O₂ diffusion. 	


COMPOSITION OF RESPIRATORY AIR:

	Inhaled air	Exhaled air
Nitrogen	79%	79%
Oxygen	20%	16%
Carbon Dioxide	TRACE	4%

Dalton's Law

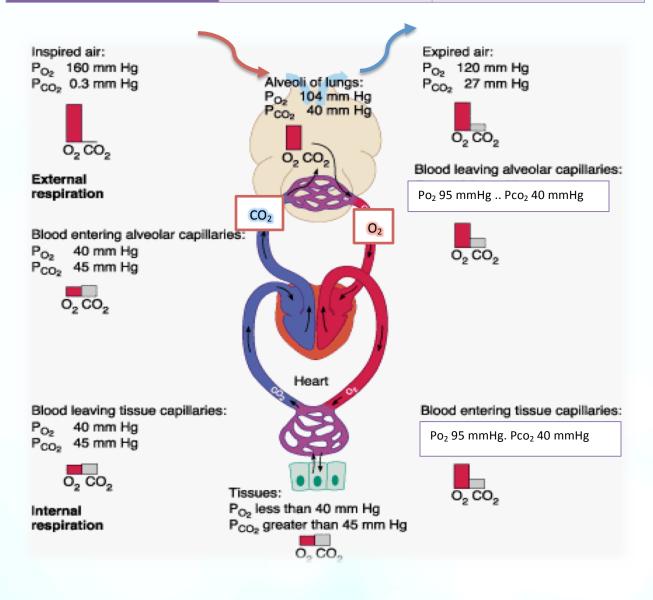
Pressure exerted by each gas in a mixture of gases is independent of the pressure exerted by the other gases.

Henry's Law

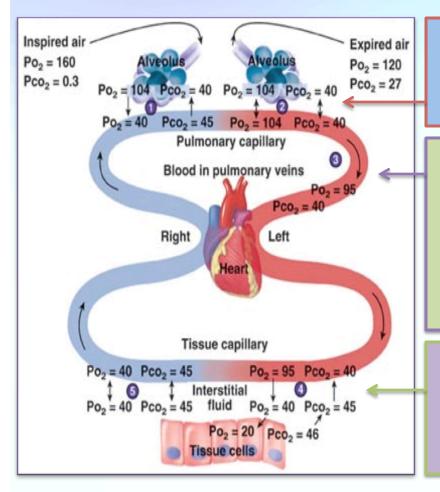
PARTIAL PRESSURE OF O2 AND CO2

O_2	
O ₂ concentration in the atmosphere	21%
PO ₂ in atmosphere: (Total × concentration of o ₂)	$(760 \times \frac{21}{100}) = 160 \text{ mmHg.}^{(1)}$
PO ₂ in alveoli	104 mmHg. (3)

CO ₂	
Co ₂ concentration in the atmosphere	0.04%
PCO ₂ in atmosphere: (Total × concentration of CO ₂)	$(760 \text{ mmHg x} \frac{0.04}{100}) = 0.3 \text{mmHg.}^{(2)}$
PCO ₂ in alveoli	40 mmHg. ⁽⁴⁾



Note

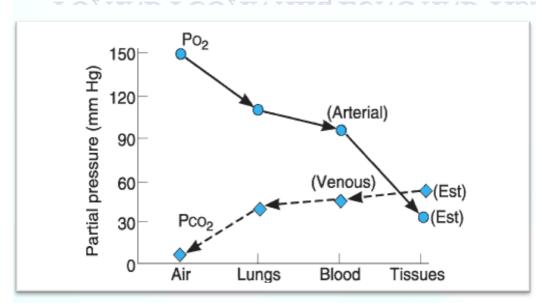

- (1) This mixes with "old" air already present in alveolus
- (3) It is lower because it's mixed with water and co₂ in the alveoli and that decrease the PO₂
- (2) This mixes with high CO2 levels from residual volume in the alveoli.
- (4) It is higher because it is mixed with the co₂ from the residual volume in alveoli

PARTIAL PRESSURE OF GASES IN INSPIRED AIR AND ALVEOLAR AIR

8	Inspired air	Alveolar air
H₂O	Variable	47 mmHg
CO ₂	0.3 mmHg	40 mmHg
O ₂	160 mmHg	104 mmHg
N ₂	601 mmHg	568 mmHg
Total pressure	760 mmHg	760 mmHg

GAS EXCHANGE

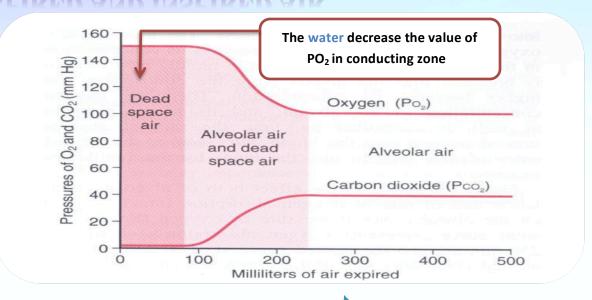
The exchange happens when the pressure diffuses in the Alveoli more than in capillaries.


(hight pressure to lowe pressure)

In the arterial blood (vein capillary) there is the pure oxygenated blood and deoxygenated blood which came from bronchi, So that cause decrease the PO₂. **THAT CALLED PHYSIOLOGICAL SHUNT**

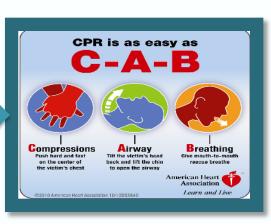
Which is: Mixed of arterial and venous blood in pulmonary circulation and that lead to decrease the PO₂.

The exchanging between the capillaries and tissue stop when there is a balance or PO₂ in capillaries become 40 PCO₂ in capillaries become 46


PO₂ AND PCO₂ IN AIR, LUNG AND TISSUE

	PO ₂	PCO ₂
High in	Atmosphe	Tissue
	re	
Low in	Tissue	Atmosphere

PO₂ and PCO₂ values in air, lungs, blood, and tissue. Both O₂ and CO₂ diffuse "downhill" along gradients of decreasing partial pressure.


PO₂ AND PCO₂ IN VARIOUS POTIONS OF NORMAL EXPIRED AND INSPIRED AIR

The PO₂ in expired air more than PO₂ in alveoli

Because PO₂ in alveoli (104 mmHg) will mixed with the PO₂ in dead space (149 mmHg) and that lead to increase the PO₂

For that we use the expired air in the first aid

O2 AND CO2 CONCENTRATION IN THE ALVEOLI

250 ml of oxygen enter the pulmonary capillaries/min

- At resting condition
- At ventilatory rate of 4.2 L/min

The rate of alveolar ventilation must increase 4 times to maintain the alveolar PO₂ at the normal value of 104 mmHg

(كلما زاد الاستهلاك يزيد الإمداد)

1000 ml of oxygen is absorbed by the pulmonary capillaries per minute

During exercise

200 ml/min, at normal rate of alveolar ventilation of 4.2 L/min.

Normal rate of CO2 excretion

Changing in the alveolar ventilation to maintain the alveolar PO₂ and PCO₂ at the normal values.

Q2:Co₂ diffusion is faster 20 time more than Q1: The diffusion of the gas depends on th o₂ because: difference in: A- CO₂ has a lower molecular weight. A- pressure B- CO₂ more soluble than O₂. **B- solubility** C- None of the above. C- speed Q4: Which of these gases we don't use Q3: With increasing of the surface area in during inhaled and exhaled: gas exchange the diffusion Will: A- CO₂ A- Increase B- O₂ **B- Decrease** C- N₂ C- No change Q5: The exchange happens when the Q6: PO₂ in the atmosphere: pressure diffuses in the Alveoli: A- 160 mmHg A- Less than in capillaries B- 104 mmgh **B-** More than in capillaries. C- 40 mmgh **C- Same as in capillaries** Q8: 4\At resting condition: A- 200 ml of oxygen enter the pulmonary O7: Po2 in the arterial blood of the capillaries/min. pulmonary capillaries: B- 1000 ml of oxygen enter the pulmonary A- 40 mmgh capillaries/min. C- 250 ml of oxygen enter the pulmonary B-95 mmgh capillaries/min. C- 104 mmgh

Answers: 1- A 2- B 3- A 4- C 5-B 6- A 7-B

8-C

Summary

- Gas exchange throw the respiratory membrane
- The rate of diffusion of each of these gases is directly proportional to the pressure caused by this gas alone which is called the partial pressure of the gas
- The exchange happen when the pressure diffuse in Alveoli more than in capillaries.
- The factor affect gas diffusion D $\alpha \frac{\Delta P \times A \times S}{d \times \sqrt{MW}}$
- CO₂ diffusion approx. 20 times faster than O₂ diffusion

	N ₂	O2	CO ₂
Composition of expired air	79%	16%	4%
Composition of inhaled air	79%	20%	TRACE

. partial pressure of o₂ and co₂

PO2 in atmosphere 160 mmHg PO2 in alveoli 104 mmHg

PCO₂ in atmosphere 0.3mmHg PCO₂ in alveoli 40 mmHg

	PO ₂	PCO ₂
High in	atmosphere	tissue
Low in	Tissue	atmosphere

- . Physiological shunt: Mixed of arterial and venous blood in pulmonary circulation and that lead to decrease the PO₂
- The PO₂ in expired air more than PO₂ in alveoli
- O₂ and PO₂ concentration in the alveoli
- During the exercise, the rate of alveolar ventilation <u>must increase</u> maintain the alveolar PO₂ at the normal value of 104 mmHg

http://www.youtube.com/watch?v=nRpwdwm06lc