Physiology Values

Pht433@gmail.com

Respiratory Block

Lecture 1 (Functional organization of the respiratory system)

Volume of air go to respiratory zone	350 ml	
Volume of air stay at conducting zone	150 ml	
(Dead space)		
Dust particles enter to airways		
Nose and pharynx	10um	
Tracheo-bronchial tree	2-10um	
within the alveoli	0.1-2um	
remain in the air stream	Less than 0.1um	
Cilia beat per minute	1000-1500 cycles / min	
Cilia move particles at rate	16 mm/min	

Lecture 2 (Mechanics of pulmonary ventilation)

Atmosph	eric pressure (PB)	760mmHg = 0
Intra-alveolar pressure		
Between	breathes (end of inspiration and expiration)	PALV = PB = 0
During in	spiration	-1 mmHg
During ex	piration	+1 mmHg
	Intrapleural pressure (IPP)	
Between	breathes (end of inspiration and expiration)	-5 cmH2O
during re	sting inspiration (peak inspiration)	-7.5 cm H2O
Forced	inspiration	-20 to -40 cm H2O
	expiration	+ 30 cm H2O
Compliance of lung		
For both	lungs in adult	200 ml of air /cm H2O
For lungs	and thorax together	110 ml/cm H2O

Lecture 3 (Lung volumes and capacities)

Lung volumes		
Tidal volume (TV)	500 ml	
Inspiratory reserve (IRV)	3000 ml	
Expiratory reserve (ERV)	1100 ml	
Residual volume (RV)	1200 ml	
	Lung capacities	
Inspiratory capacity (IC)	3500 ml	
functional residual capacity (FRC)	2300 ml	
vital capacity (VC)	4600 ml	
total lung capacity (TLC)	5800ml	
	- Normal = 80%	
EEV / EVC Batia	- Restrictive diseases	
	(normal or increased)	
	- COPD (decreased)	

Minute respiratory volume	Usually 6 L\min
	(TV x Respiratory rate = MRV)
Pospiratory Poto	Normal between 12-18 /min
Respiratory Rate	Abnormal may 2-4 /min
Alveolar ventilation rate	4.2 L/min
	(Respiratory rate x [TV- dead space])

Lecture 4 (Lung Function in health and disease)

Decline in [FEV1] after age of 30

None-smoker	25-30 ml/year
Smoker	60-70 ml/year

Lecture 5 (Gas transfer: diffusion of o2 and co2)

Diffusion coefficient		
02	1	
Co2	20	
NO2	0.53	
O2 and co2 conc. In the alveoli		
At rest	250 ml of o2	
During exercise	1000 ml of o2	
Normal co2 excretion	200 ml/min	
Partial pressure of o2 and co2		
O2 conc. In atmosphere	21%	
Co2 conc. In atmosphere	0.04%	
Atmosphere pressure	760 mmHg	
Pco2 in the air	0.3 mmHg	
Pco2 in the alveoli	40 mmHg	
Pco2 in the arterial blood (pulmonary capillaries)	40 mmHg	
Pco2 in the venous blood (interstitial space)	45 mmHg	
Pco2 in the tissues	46 mmHg	
Po2 in the air	160 mmHg	
Po2 in the alveoli	104 mmHg	
Po2 in the arterial blood (pulmonary capillaries)	95 mmHg	
Po2 in the venous blood (interstitial space)	40 mmHg	
Po2 in the tissues	20 mmHg	

Lecture 6 (oxygen and carbon dioxide transport)

O2 content in 100 ml of blood	
When blood is 100% saturated with o2	
1 ml of HB carries	1.34 m o2
O2 content	20 ml/100 ml
When blood is only 97% saturated with o2	
O2 content	19.4 ml/100 ml
Amount of o2 released from HB to tis	ssues
Normal condition	5 ml /100 ml blood
So, O2 content in venous blood	14.4 ml/100 ml blood
During strenuous	15 ml/100 ml blood
So, o2 content in venous blood	4.4 ml/100 ml blood
O2 transport forms in blood	
Dissolved in plasma	3%
Bound to HB (oxyhemoglobin)	97%
P50	
Normal	26.5 mmHg
Fetal HB	20 mmHg
Utilization coefficient	
At rest	5 ml/20ml=25%
During exercise	15 ml/20ml=75%
Dissolved o2	
At normal arterial po2 95 mmHg	0.29 ml /100 ml blood
When po2 falls to 40 mmHg	0.12 ml remains dissolved
O2 that transported in dissolved state	0.17 ml/ 100 ml blood
Co2 transport forms	
dissolved	7%
Bicarbonate	70%
Carbaminohemoglobin	23%
Blood PH	
Arterial blood PH	7.41
Venous blood PH	7.37(higher pco2)
Arterial and venous blood PH change	0.04
Respiratory quotient	
Normal	4/5=82% = 0.825
CHO diet	1
Fats diet	0.7
Each 100ml of blood carry 4 ml of co2 from the tissues/min	

Lecture 7 (Hypoxia and cyanosis)

Hypercapnea	PCO2 increases above 52 mmHg	
Cyanosis	Reduced (deoxygenated) hemoglobin in blood to more than 5 g/dl.	
Pulmonary blood flow rate	5 (L\min)	
Ventilation –perfusion ratio (V/Q ratio)		
Average	0.8	
At the apex of the lung	3	
At the base of the lung	0.6	
Ventilation/perfusion abnormalities		
Physiologic dead space	more than normal	
physiologic shunt	less than normal	

Lecture 8(Control of Breathing)

stretch receptors transmit signals	When tidal volume is 1 L or more
Respiratory Acidosis	-PCO2 increases -pH decreases.
Respiratory Alkalosis	- PCO2 decreases (35 mmHg). -pH increases.

Lecture 9 (effects of low and high altitude)

Effects of increased barometric pressure		
10 meter of depth sea water (33 feet)	Surrounding pressure increases by 1 atmosphere	
31 meter of depth sea water (100 feet)	Surrounding pressure increases by 4 atmosphere	
Effects of depth on the volume	e of the gases	
1 L (sea level)	1/2 L at 33 feet	
Effects of low pressure on the body		
At the sea level	Atmospheric pressure=760 mmHg	
At 10,000 feet	523 mmHg	
At 50,000 feet	87 mmHg	
Alveolar po2 at different altitudes		
At the sea level	Po2 = 159 mmHg	
At 20,000 feet	Po2 = 40 mmHg	
At 50,000 feet	Po2 = 18 mmHg	
Effects of acute hypoxia		
Beginning of hypoxia at altitude	12,000 feet	
Beginning of twitching or convulsions	18,000 feet	
Un acclimatization person enter into coma	23,000 feet	

Lecture 10 (effects of exercise on the respiratory system)

Diffusion capacity		
At rest	21 ml/ min/ mmHg	
	11 mmHg	
Oxygen difference across is 11 mmHg	230 ml	
During rest tissues consume	250 ml o2 / min	
At exercise	65 ml / min / mmHg	
Co2		
At rest	400 ml / min / mmHg	
During exercise	1200 – 1300 ml/min/mmHg	
Both O2 and CO2 may increase 20-folds du	uring exercise	
Relation between exercise duration & energy source		
Glycogen lactic acid system	1.3 – 1.6 min	
Phosphagen system	8 – 10 sec	
Aerobic system	Unlimited time	
O2 consumption		
Normal	250 ml /min	
Untrained average male	3600 ml / min	
Athletically trained average male	4000 ml /min	
Male marathon runners	5100 ml / min	
Maximum pulmonary ventilation	100-110 L/min	
Oxygen DEPT	11.5 L	
Maximum Breathing capacity	150-170 L/min	

Done by:

Awatif Alenazi – Aisha Alradadi

Revised by:

Mojahed Otayf

Good luck 🙂