

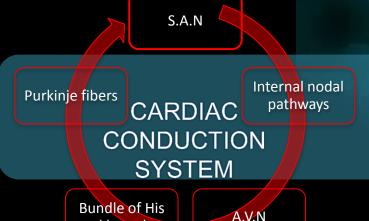
King Saud University College of Medicine 1st Year, 4th block

ANTIARRHYTHMIC DRUGS

Cardiovascular Block

OBJECTIVES

Classification of antiarrhythmic drugs


Characters of each class

Examples of drugs in each class

Pharmacological effects, therapeutic uses, side effects of individual drugs

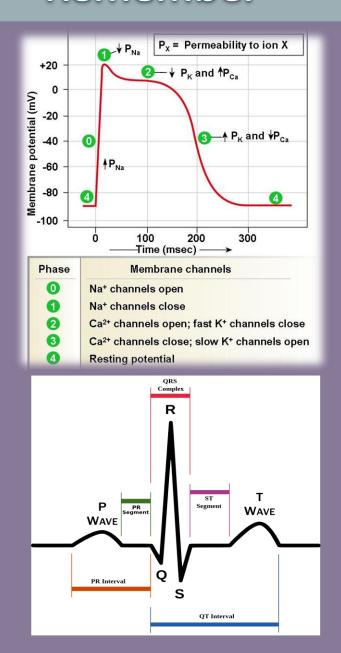
and branches

CARDIAC ACTION POTENTIAL

Depolarization

Repolarization

Resting membrane potential


Inward current

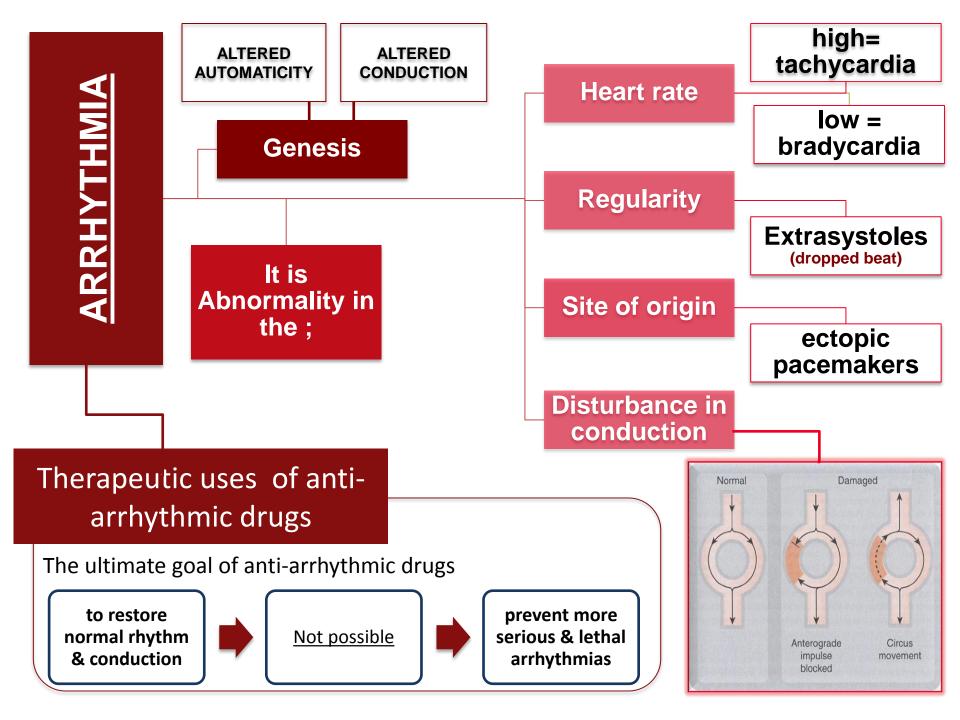
Outward current

Remember

Remember

Arrhythmias happen due to ionic movement → change in action potential

• S.A.N don't have plateau (phase2) and resting potential (phase4)


A.V.N. & S.A.N depend on ca²⁺ influx

• ECG

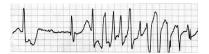
PR interval → time of conduction between atrial & ventricles


QT interval \rightarrow duration of ventricular action potential

Abbreviation		
AF Atrial fibrillation		
AF Atrial Flutter		
A.V.N	Atrioventricular node	
S.A.N senatorial node		

CLASSIFICATION of ANTIARRHYTHMIC DRUGS According to Vaughan-Williams

N	Mechanism of action	Sodium channels blockers, this result in: •	Decreased rate of deposit of action p	, ,
	Characteristics	 Act on non-nodal tissues (atria, ventricles, purkinje tissues) which are depending on sodium ion to start depolarization have local anesthetic effect that slow conduction in atrial &ventricular tissues 		
5	Sub classification	Class (1A) Class (1B) Class (1C)		
	Action	Potassium channel blocking effect: ~ Prolong the action potential duration → Prolong Effective refractory period (ERP) → ECG change → Prolong QT interval. ~ Anticholinergic actions (1) ~ Negative inotropic effect	Shorten action potential duration and effective refractory period of Purkinje & ventricular cells → Ψ ERP	 Slow conduction in all cardiac tissues. Depress cardiac contractility No prominent effect on the duration of the action potential negative inotropic effect
	Clinical uses	 Atrial flutter or fibrillation (2) Ventricular tachycardia or fibrillation. At high concentration they have local anesthetic effect 	Ventricular arrhythmiasIschemia of cardiac tissue	 Paroxysmal AF or AF. Life –threatening ventricular arrhythmias used in arrhythmias not responding to other therapy
	Examples	 Quinidine Procainamide	LidocaineMexiletine	Flecainide Propatonone

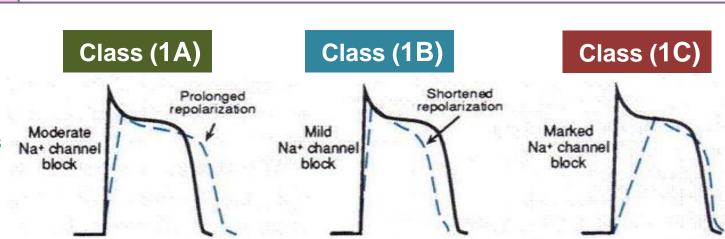

increase AV conduction that can precipitate lethal ventricular arrhythmias in AF or AF

These drugs should not be used alone for treatment of AF or AF because the ventricular rate may dramatically increase

Propafenone

Sub classification		Class (1A)		
	Example	Quinidine	Procainamide	
	Characteristics	 Has α adrenergic blocking effect At toxic concentration will cause asystole (cardiac arrest). Drug interaction with digoxin. 	 less toxic on the heart. More effective in ventricular than in atrial arrhythmias less depressant on cardiac contractility Weak anticholinergic or α-blocking actions 	
	Given	Orally (rarely given I.V. because of cardiac toxicity)	can be given I.V. (common route)	
	Clinical uses	 Atrial flutter or fibrillation. Ventricular tachycardia or fibrillation. 	For treatment of ventricular tachycardia after acute myocardial infarction (AS Second drug of choice after lidocaine)	
	Side effects	 GIT: diarrhea CARDIAC: Torsades de pointes⁽¹⁾ (quinidine syncope) Hypotension Anticholinergic adverse effects (dry mouth , dry skin ,constipation) Cinchonism: (ringing in the ears , diarrhea) 	 lupus erythematosus-like syndrome Hypotension Torsades de pointes Hallucination & psychosis 	

⁽¹⁾ A condition of the heart , it's a polymorphic ventricular tachycardia

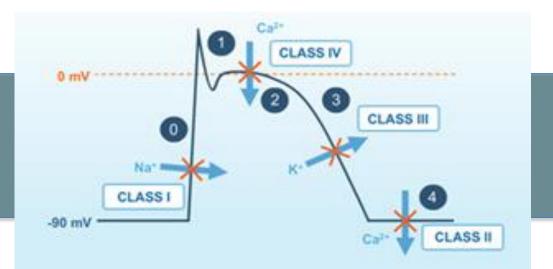


Sub classification		Class (1B)		
	Example	Lidocaine	Mexiletine	
	Rout of administration	Given I.V. bolus or slow infusion	Given Orally	
 Not given orally because of its extensive first –pass hepatic metabolism only 3% of orally administered lidocaine appears in plasma. T1/2 2 hours 		first –pass hepatic metabolism only 3% of orally administered lidocaine appears in plasma. 	• t1/2 long (10 hr)	
	Clinical uses	 Very effective for suppressing arrhythmias due to ischemia, digitalis toxicity First drug of choice for emergency treatment of ventricular arrhythmias following cardiac surgery or acute myocardial infarction NOT effective in atrial arrhythmias 	 treatment of ventricular arrhythmia. digitalis-induced arrhythmias. chronic pain e.g. diabetic neuropathy and nerve injury. 	
	Side effects	1.Neurological such as: Convulsions, tremors	Gastric upset Neurological manifestation	

Sub classification		Class (1C)		
	Example	Flecainide	Propafenone	
	Characteristics	1.Slow conduction in all cardiac tissues.2.Depress cardiac contractility3.negative inotropic effect4.No prominent effect on the duration of the	ne action potential	
	Clinical uses	 supraventricular arrhythmias in patients with normal hearts Are used in arrhythmias not responding to other therapy Wolff-Parkinson-White syndrome* 		
	Side effects	 Significant risk of Heart failure. Proarrhythmias 		
	Note	These drugs are not used anymore because to patients surviving myocardial infarction	they may increase mortality when administered	

*Pre-excitation of the ventricles due to an accessory pathway known as the Bundle of Kent.

This accessory pathway is an abnormal electrical communication from the atria to the ventricles



Mechanism	β- Adrenergic receptor Antagonists	
Action	blocking β_1 - receptors in the heart \rightarrow reduce the sympathetic effect on the heart causing : \sim decrease automaticity of S.A. node and ectopic pacemakers \sim slow conduction of the A.V node \sim Heart rate. \sim Contractility.	
Clinical uses	 Atrial arrhythmias associated with emotion, exercise Digitalis-induced arrhythmias Drugs of choice to reduce the incidence of ventricular fibrillation following acute myocardial infarction. 	
Examples	PropranololEsmolol	

CLASS III

Mechanism	Potassium channels blocking drugs		
Action	Prolong the action potential duration & effective refractory period . (Prolong phase3)		
Examples	Amiodarone	Ibutilide	
Characteristics	 Main effect is to prolong action potential duration and refractory period Has an additional actions of classes: I, II & IV Has an α and β-adrenoceptor blocking effects. 		
Clinical uses	 Treatment of recurrent ventricular tachycardia – Fibrillation It is restricted for life-threatening arrhythmias. maintenance of sinus rhythm after D.C. cardioversion of atrial flutter and fibrillation. 	for acute (rapid) conversion of atrial flutter or atrial fibrillation to normal sinus rhythm.	
Adverse effects 1. Bradycardia & heart block, heart failure 2. pulmonary fibrosis ,interstitial pneumonitis 3. hyper- or hypothyroidism 4. Skin deposits causes photodermatitis , gray-blue skin rash. 5. Peripheral neuropathy 6. Constipation 7. corneal opacities 8. Hypotension		QT interval prolongation (precipitates torsades de pointes).	
Pharmacokinetics	extremely long $t_{1/2} = 13 - 103$ DAYS	Given by a rapid I.V. infusion	
Drug Interactions	reduce renal clearance of several drugs (quinidine, procaiamide, flecainide)		

Mechanism	Inhibits calcium entry through L-type calcium in the myocardium and depress AV nodal transmission.
Action	Site of action is A.V.N & S.A.N (slow conduction & prolong effective refractory period).
Clinical uses	Atrial flutter – fibrillation Av nodal reentry NOT effective in ventricular arrhythmias
Examples	Verapamil,Diltiazem
Side effects	Sinus arrest or complete AV nodal blockade in the presence of β-adrenergic receptor blockers

MISCELLANEOUS GROUP

Adenosine

Naturally occurring nucleoside half-life= less than 10 sec.

MECHANISM

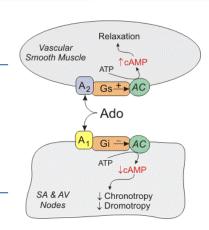
In cardiac tissues

Binds to type 1 (A1) receptors which are coupled to Giproteins

activation

Opening of potassium channels (hyperpolarization)

Decrease cAMP which inhibits L-type calcium channels (♥ calcium influx)


decrease AV nodal conduction

Adenosine increases the vagal tone of the AV node

decrease conduction velocity in Av node

CLINICAL USES

Drug of first choice for terminating an Episode of paroxysmal supraventricular tachycardia

ADVERSE EFFECTS

Flushing & headache

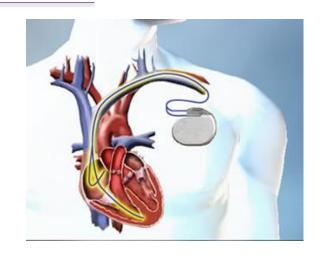
Dyspnea and chest pain

brief AV block (contraindicated in heart block)

Hypotension

BRADYARRHYTHMIAS

sinus bradycardia after myocardial infarction and in heart block


severe heart block isoprenaline may be combined with atropine

NONPHARMACOLOGIC THERAPY OF ARRHYTHMIAS

Implantable Cardiac Defibrillator (ICD)

can automatically detect and treat fatal arrhythmias

such as ventricular fibrillation

SUMMARY

<u>Classification</u>	Sub- Classification	<u>Clinical uses</u>	Example of drugs
	Class (1A)	1- Atrial flutter or fibrillation 2-Ventricular tachycardia or fibrillation	1- Quinidine Has α adrenergic blocking effect
		3-[Procainamide] Second drug of choice (after lidocaine) for treatment of ventricular tachycardia after acute myocardial infarction	2-Procainamide
CLASS I Sodium channels	Class (1B)	1- Very effective for suppressing arrhythmias due to ischemia, digitalis toxicity 2-First drug of choice for emergency treatment of ventricular tachycardia following cardiac surgery or acute myocardial infarction	<u>Lidocaine</u>
blockers		Chronic treatment of ventricular arrhythmia digitalis-induced arrhythmias	<u>Mexiletine</u>
	Class (1C)	1-Paroxysmalatrial flutter or fibrillation2-life-threatening ventricular arrhythmias3- (Are used in arrhythmias not responding to other therapy)	Flecainide
			Propafenone
	β- Adrenergic receptor	1- Atrial arrhythmias associated with emotion, exercise	Propranolol
CLASS II	Antagonists 2- Digitalis-induced arrhyt 3- Drugs of choice to redu ventricular fibrillation follo infarction.		Esmolol

SUMMARY

	Class 3 Amiodaron (Broad anti-Arrhythmic spectrum)	Class 4 Verapamil, Diltiazem	Miscellaneous group Adenosine
Mechanism	Block the K+ channels (prevent K+ ions discharge)	Ca2+ channels blockers in Nodal tissues : Atria, Supraventricular) <u>except:</u> <u>ventricles</u>	It works on cardiac tissue and opens the K+ channels by: 1) binding to A1 receptors (directly) that are coupled With Gi-proteins >> Dec. cAMP >> hyper-reploarization. (dec. Ca2+ influx) 2) (Indirectly) Vagal tone stimulation
Effecacy	-It <u>prolongs</u> the Action potential duration & Effective Refractory period (Phase 3)It has the longest T1/2= 13- 103daysIt reduces the renal clearance during <u>drugs interaction</u> .	-Decreases the depolarization (phase 0) in Ca2+ dependent tissue. -Reduces the conduction pathway/transmission (Sa node+AV node). -Decreases the cardiac work & output.	-Dec. AV node conduction + velocity + automaticityRapid onset of action
Clinical uses	-Recurrent Ventricular Fibrillation and Tachycardia Life-threatening arrhythmiasMaintain sinus rhythm.	-Atrial flutter or fibrillationAV node Re-entery.	Drug of choice in proxysemal Supraventricular Tachycardia >> given by I.V (6mg) followed by 12 mg if necessary

1. The mechanism of class 2 antiarrhythmic drugs (B adrenergic receptor blockers) is to : A. reduce the parasympathetic effect B. reduce the sympathetic effect C. increase the sodium flow	5.The site of action of class 4 antiarrhythmic drugs is : A.non-nodal tissue B. A.V & S.A nodes C. non of the above
a patient has a history of myocardial infarction what is the best drug to reduce the incidence of ventricular fibrillation: A.varapamil B. adenosine C.esmolol	6. the mechanism of adenosine is to : A.inhibit the sympathetic effect B.increase the vagal tone C.decrease the impulses
3. A patient taking antiarrhythmic drug. On a follow-up appointment the doctor found that he developed an interstitial pneumonitis. What is the drug he was taking: A. amiodarone B. Ibutilide C. adenosine	7. a patient has an episode of paroxysmal supravenrticular tachycardia, what is the best drug to prescribe: A.adenosine B.varapamil C.diltiazm
4. The best rout of administration for Ibutilide is : A. I.V B. oral C. S.C	 8. which class of antiarrhythmic drugs can be used in case of atrial arrhythmia associated with emotion or exercise: A. class 1 B. class 2 C. Miscellaneous

 one of the action of class A1 is potassium channel block and this lead to: Prolong the action potential duration and decrease the effective refractory period. Prolong the action potential duration and increase the effective refractory period prolong the QT interval both B & C. 	4. A patient brought to the emergency department unconscious. His relatives said the he have complained recently of hypotension, nausea and vomiting ECG is immediately performed and it shows torsades de pointes. What is the most likely drug to cause those symptoms? A. Flecainide B. Propafenone C. Qunidine D. Lidocaine
2. MEXILETINE use for treatment of emergency ventricular tachycardia following cardiac surgery or acute myocardial infarction A. T B. F	 5. which one of this drugs have no effect on AP duration: A. Flecainide B. Propafenone C. Qunidine D. Both a & b
3. class 1 act on nodal tissue : A. T B. F	 6. a patient had ventricular tachycardia after acute myocardial infarction, what is the second drug of choice in this case: A. Flecainide B. Propafenone C. Qunidine D. PROCAINAMIDE

We hope we made this lecture easier for you Contact us for any questions or comments Good Luck!

Nada Dammas

Sara Alkharashi Budoor alsalman Jumana Albeeybe Rawan Alotaibi Areej Alwahaib **Ahmed Aldakhil**

Ziyad Alajlan

Pharma_433@yahoo.com

@pharma_433

