SHOCK

Cardiovascular Block

Objectives

- Define circulatory shock.
- List types and causes of shock.
- Understand the body compensatory mechanisms during the reversible phase of hemorrhagic shock.
- Understands the mechanisms responsible for the irreversible phase of hemorrhagic shock

Definition of shock

Inadequate tissue perfusion with relatively or absolutely inadequate cardiac output.

TYPES AND CAUSES

- Hypovolemic shock.
- Distributive shock.
- Cardiogenic shock.
- Obstructive shock.

Type of Shock	Features and causes		
Hypovolemic shock	-Loss of blood volume due to: 1. Hemorrhage. 2. Trauma. 3. Surgery.	-Fluid loss due to: Severe vomiting or diarrhea.	-Plasma loss; As in burns.
Distributive shock (also called vasogenic, low resistance shock)	 There is marked vasodilation caused by: Anaphylaxis (due to antigen-antibody reaction, e.g drug –induced) Sepsis. Neurogenic: Vasovagal, acute venous dilation 		
Cardiogenic shock	Results from inadequate output caused by diseased heart: 1. Myocardial infarction. 2. Congestive heart failure. 3. Arrhythmias.		
Obstructive shock	Due to obstruction to the flow of the blood: 1. Tension pneumothorax. 2. Pulmonary embolism.		

Pathophysiology of hypovolemic shock

hypovolemic shock is subdivided into hemorrhagic traumatic surgical burn shock

Stages of hypovolemic shock

Reversible stage

In which compensatory reactions and appropriate treatment help restoration of blood pressure and blood loss.

Irreversible stage

In which series of positive feed back mechanisms take place leading to further deterioration & tissue hypoxia.

Reversible stage

Characterized by compensatory reactions:

Rapid compensatory Reactions

(sec-min)

Responses activated (hours)

Responses activated from (hours-days)

- This depends on amount of blood lost.
- When blood loss is excess and not immediately replaced and proper treatment is delayed, this stage is reached and patient die.
- There is also failure of compensatory mechanisms.

Reversible stage

A.Rapid compensatory reactions

I. VASOCONSTRICTION:

this increases TPR and hence ABP.

It is produced by:

- * Baroreceptor reflexes.
- * Chemoreceptor reflex.
- * Vasopressin-vasoconstrictor mechanism.
- * Noradrenalin-adrenaline vasoconstrictor mechanism (due to activation of adrenal medulla).

Vasoconstriction is marked in:

- Skin: cold, pale.
- kidneys: drop in GFR & urine volume.
- Viscera.

Heart and brain are spared.

TPR:total physical response ABP:Arterial blood pressure GFR: glomerular filtration rate

Spared =safe

II. TACHYCARDIA:

(due to drop in BP)

Produced by:

- Baroreceptor reflex.
- Chemoreceptor reflex.
- Increased sympathetic activity.

III. VENOCONSTRICTION:

Caused by sympathetic activity.

It is important to:

- Maintain filling pressure of the heart.
- Shift blood from reservoirs into the circulation

IV. TACHYPNEA:

Caused by activation of chemoreceptor reflex and sympathetic over activity.

It is important to:

Increase O2 delivery.

Increase thoracic pump activity (help in increase VR).

VR =Venous return
Venoconstriction =
constriction of a vein

V. RESTLESSNESS:

due to sympathetic over activity.

This increases skeletal Muscle Pump activity (help in increase VR).

VI. RELEASE OF VASOCONSTRICTOR FACTORS/HORMONES:

- Catecholamine by adrenal medulla.
- Vasopressin (antidiuretic hormone) by posterior pituitary:
 causes vasoconstriction and restores fluid volume by reducing urine output.
- Renin-angiotensin-aldosterone. (preserve salt and water).

Preserve= protect

Catecholamine → Adrenaline

Reversible stage

B. Responses Activated within hours:

- 1. Increased movement of interstitial fluid into capillaries (capillary fluid shift).
- 2. Increased secretion of glucocorticoids by adrenal cortex (help to maintain blood sugar).
- 3. Increased 2,3 DPG concentration in RBCs: important to help HB deliver more O2 to tissues (shift O2 dissociation curve to the right).

C. Responses activated in hours-days:

- 1. Restoration of circulatory plasma volume. Takes 12-72 hrs after moderate hemorrhage.
- 2. Restoration of plasma proteins: occur in 2 stages:
- a- Rapid entry of performed albumin from extracellular stores.
- b- Hepatic synthesis of proteins over 3-4 days.
- 3. Restoration of RBCs

Restoration of RBCs: Increase RBCs count in response to erythropoietin within 10 days, the duration of the restoration is within 4-8 weeks

Irreversible stage

Cardiac depression

• Atrial premature beats = Ψ coronary flow = Ψ heart = Ψ CO

Vasomotor failure

• Results from depression of vasomotor center, the heart becomes depressed and CO drops.

Release of toxins by ischemic tissues

• e.g. histamine, tissue enzymes, potassium, ...

Endotoxin

• Released from gram +ve bacteria when blood flow to intestine decreases lead to absorption of toxins and that will lead to Cardiac depression.

Generalized cellular deterioration

- II.stop of mitochondrial activity inside the cells lead to decrease in ATP.
- II. drop of cellular metabolism, especially glucose.
- III.Rupture of many lysosomes.
- IV. Drop in active transport of Na+ and K+ across the cell lead to Na+ accumulate inside the cell.

Summary

DEFINITION

Inadequate tissue perfusion with relatively or absolutely inadequate cardiac output.

TYPES

- Hypovolemic shock.
- Distributive shock.
- Cardiogenic shock.
- Obstructive shock.

STAGES

- Reversible stage
 - Responses activated (hours)
 - Responses activated from (hours-days)
 - Rapid compensatory Reactions(sec- min)
- Irreversible stage

1-In almost all patients who have severe burns or other denuding conditions of skin, so much plasma lost, the resulting condition is:

A-Neurogenic shock

B-Hypovolemic shock

C-Septic shock

D-Histamine shock

2-One type of shock that due to Loss of blood volume:

A-Obstructive shock

B-Cardiogenic shock

C-Distributive shock

D-Hypovolemic shock

3-One of these factors will not cause circulatory shock:

A-Cardiac abnormality

B-Decrease venous return

C-Increase venous return

D-Diminished blood volume

4-An increase in a vascular capacity because of venous dilation, thus causing a marked decrease in:

A-Venous return

B-Capillary permeability

C-Histamine

D-Antigen-antibody reaction

1-B

2-D

3-C

4-A

5-Positive feed back mechanisms take place leading to further deterioration & tissue hypoxia:

A-Reversible stage

B-Irreversible stage

6-Function of Renin-angiotensin-aldosterone:

A-Increase preload and decrease afterload

B- Inhabit secretion of aldosterone

C-Preserve salt and water

D-None of above

7-Sympathomimetic drug have proved to be especially beneficial in :

A-Septic shock

B-Hypovolemic shock

C-Hemorrhagic shock

D- Neurogenic shock

8-When the pressure falls too low in most types of shock, This...... is first essential step in the treatment of many type of shock:

A-Oxygen therapy.

B-Head down position.

C-Drug include Norepinephrine

D-Glucocorticoids

5-B 6-C 7-D 8-B

Done by:

Abdulmalek Al Qhtani Othman Abid Ahmed Al Hussain Hamad Al Dossari Mojahed Otayf

Revised by:

Raneem Alotaibi Rahma Alshehri