

Kidney stones Lecture 3

Renal Block Biochemistry433@hotmail.com

Renal calculi (kidney stones) are formed in **renal tubules**, **ureter** or **bladder**. Composed of metabolic products present in glomerular filtrate. These products are in high conc. (Near or above maximum solubility).

CONDITIONS CAUSING KIDNEY STONE FORMATION

1st : High conc. of metabolic products in glomerular filtrate :	2nd : Urinary stagnation (Stagnation means obstruction):	: 3rd : changes in urine PH	: 4th : Deficiency of stone- forming inhibitors in urine
 Jurinary volume (with normal renal function) Restricted fluid intake †fluid loss over a long period of time trate of excretion of metabolic products forming stones † plasma volume (that increases filtrate level) ↓ tubular reabsorption from filtrate 	due to: Obstruction of urinary flow → In case of enlarged prostate .	 (change in pH inhibits some metabolic actions and makes stone insoluble) due to: Bacterial infection . Precipitation of salts at different pH . A persistently acidic urine promotes uric acid precipitation A persistently alkaline urine (due to upper urinary tract infection) promotes Mg Ammonium Phosphate crystals (Struvite stones) 	 <u>Citrate, pyrophosphate, alycoproteins</u> inhibit growth of calcium phosphate and calcium oxalate crystals In type I renal tubular acidosis, hypocitraturia leads to renal stones.

- CALCIUM SALT

•

.

- 80% of kidney stones contain calcium
 - Mostly it consists of: Ca-Oxalate 0
 - Less often: Ca-Phosphate 0
- The type of salt depends on
 - Urine pH 0
 - Availability of oxalate (Oxalate binds with 0 Ca and makes it more solid)
- General appearance:
 - White, hard, radio-opaque 0
 - Calcium PO4: staghorn in renal pelvis Ο (large)
 - Calcium oxalate: present in ureter 0 (small)

- Causes of calcium salt stones
- <u>Hypercalciuria:</u> 1.
 - Increased urinary calcium excretion 0
 - Men: > 7.5 mmols/day 0
 - Women > 6.2 mmols/day 0
 - May or may not be due to hypercalcemia 0 (high Ca in blood)
- 2. Hyperoxaluria:
 - favours formation of calcium oxalates (even with no hypercalciuria)
- causes:
 - exogenous (diet rich in oxalate) Ο
 - ↑absorption (in fat malabsorption) (Fat 0 malabsorption \rightarrow fat will bind to Ca and excreted \rightarrow low ca and high oxlatee)
 - Primary hyperoxaluria: inborn errors, in 0 childhood, urinary oxalates > 400 mmol/ 24 hours

Treatment of calcium salt stones:

- Treatment of primary causes such as infection, hypercalcemia, hyperoxaluria
- Oxalate-restricted diet (It's not recommended to reduce calcium in diet)
- Increased fluid intake (If there is no glomerular failure)
- Acidification of urine (by dietary changes)
 - o Calcium salt stones are formed in alkaline urine

2- URIC ACID STONES

- About 8% of renal stones contain uric acid
- May be associated with hyperuricemia (with or without gout)
- Form in acidic urine
- General appearance:
 - o Small, friable, yellowish
 - o May form staghorn
 - Radiolucent (plain x-rays cannot detect)
 - Visualized by ultrasound or i.v. pyelogram
- Treatment:
 - Treatment of cause if hyperuricemia.
 - o Purine-restricted diet (Since uric acid is the product of breakdown of purine he picture is
 - Alkalinization of urine (by dietary changes)
 - o Increased fluid intake (If there is no glomerular failure)

staghorn shape

3- MG AMMONIUM PO4 STONES

4- CYSTINE STONES

- About 10% of all renal stones contain Mg amm. PO4
- Also called struvite kidney stones
- Associated with chronic urinary tract infection
 - Microorganisms (such as from Proteus genus) that metabolize urea into ammonia
 - Causing urine pH to become <u>alkaline</u> and stone formation
- Commonly associated with staghorn calculi
- 75% of staghorn stones are of struvite type
- Treatment:
 - o Treatment of infection
 - Urine acidification
 - Increased fluid intake
 - It may need complete stone removal
 - (Percutaneous nephrolithotomy)

- A rare type of kidney stone
- Due to homozygous cystinuria
- Form in acidic urine
- Soluble in alkaline urine
- Faint radio-opaque

• Treatment:

- Increased fluid intake
- Alkalinization of urine (by dietary changes)
- Penicillamine (binds to cysteine to form a compound more soluble than cystine)

Stone	Formed in	treatment
Calcium	Alkaline urine	Acidification of urine
Uric acid	Acid urine	Alkalization of urine
MG ammonium PO4	Alkaline urine	Acidification of urine
Cystine	Acid urine	Alkalization of urine

Q1: kidney stones may form in all of the following except:

a) Ureter

b) Urethra

c) Renal tubules

d) Urinary bladder

Q2: hypocitraturia leads to renal stones in:

a) Type Irenal tubular acidosis b) Type 2renal tubular acidosis

c) Type Irenal tubular alkalosis

d) Type 2renal tubular alkalosis

Q3)80% of stones contain:

a) NA b) Uric acid c) Ca d) MG

Q4: staghorn appearance stones are found in:

- a) Ureter
- b) Bladder
- c) Minor calyces
- d) renal pelvis

Q5: calcium salt stone are formed in:

- a) alkaline urine
- b) acidic urine
- c) balanced urine
- d) none of the above

Q6: alkalization of urine will treat:

- a) Calcium salt stones
- b) Uric acid stones
- c) Cysteine stone
- d) Ans B + C

Ans 1:b 2:a 3:c 4:d 5:a 6:d

GOOD LUCK

DONE BY: Ahmed Alqhtani Meshal Al-Ohali Ahmed Al-hussien **Mojahed Otyef** Jowaher Alabdulkarim **REVISED BY:** Sara alDokhayel Maha AlRajhi

