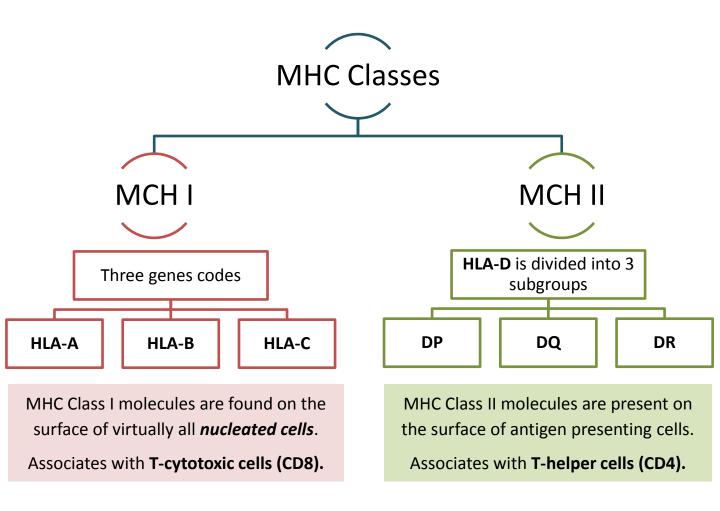


Transplantation

Lecture 2

Prof. Zahid Shakoor

Explanation & Extra Notes

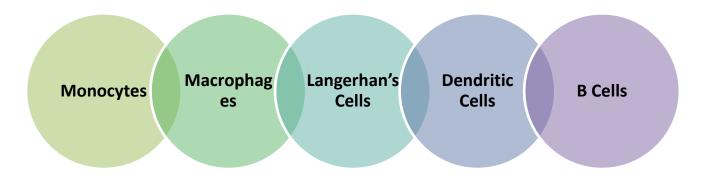

Major Histocompatibility Complex & Transplantation

Introduction

- MHC: 'major histocompatibility complex', they were discovered with tissue transplant
- **HLA:** 'human leukocyte antigens', encoded by HLA genes
- Transplantation depends upon the donor's and recipient's HLA gene combinations.
- These proteins are allo-antigens*
- HLA gene proteins are found in the MHC located on the <u>short arm of chromosome 6</u>

You can use 'MHC' & 'HLA' interchangeably, they are the same.

Allo-antigen: an antigen present in different individuals of the same species. (important in transplant)



MHC Classes

- Each group of MHC consists of several *glycoproteins*.
- Each individual has two "*haplotypes*" **i.e.** two sets of these genes: one paternal and one maternal.
- These genes are very diverse "polymorphic".
- Each individual has a different combination (identity set), expect for identical twins.

Note: The numbers of molecules in each HLA group are just to show the diversity.

Antigen Presenting Cells

Biologic Importance of MHC

Antigen Recognition (MHC Restriction)

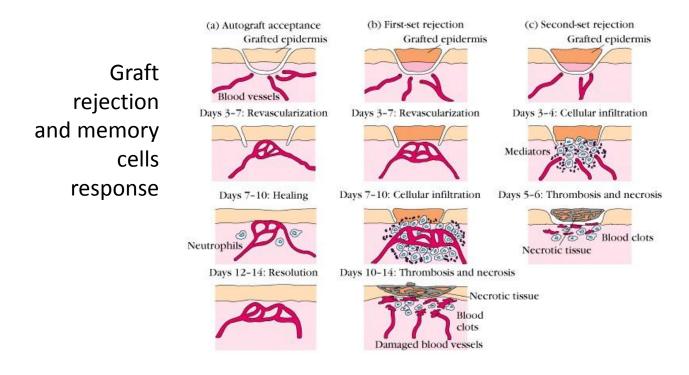
- **T cytotoxic (CD8)** cells kill virus infected cells in association with **class I MHC** proteins.
- Helper T (CD4) cells recognize antigen in association with class II MHC proteins.

Transplantation

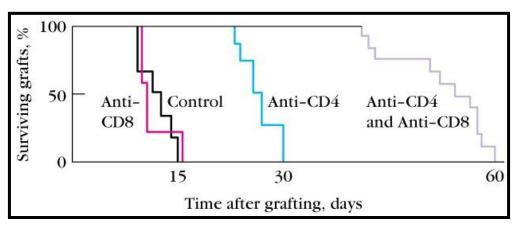
• Success of organ transplant is determined by compatibility of the MHC genes.

Minor HLA Genes

- Weak immune response
- Play role in *chronic rejection* of a graft
- No laboratory tests to detect it
- Class III MHC locus between MHC I & II
- Encode for TNF, lymphotoxin, C2 & C4

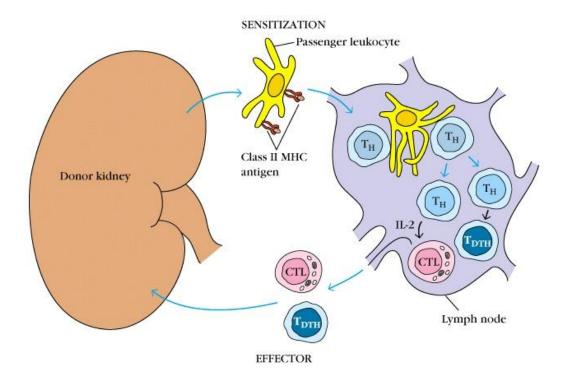

Transplantation

Types of Grafts:


Auto-	Synergic	Allo-	Xeno-	Artificial
Self	Twin	Same Species (person to person)	Different Species (animal to person)	Man-made
Skin, bone marrow		Heart, lung, kidney, liver		Joints, valves

The Immune Response

- The immune response is a major barrier to transplantation. Classic adaptive/acquired immune response:
- T cells (main)
 - Memory
 - Specificity
- **B cells** (sometimes)
- If a graft is rejected the first time, it is rejected even faster the second time due to *memory cells*.
- Nude mouse with no T-cells accepts allo-grafts, but a mouse with no B-cells and present T-cells with reject the graft.
- Depleting one or both T-cells (CD4/CD8) will increase chances of graft survival.


Knocking down CD4 is more effective than CD8, both is most effective

Nude mouse (with no Tcells) accept the rabbit skin graft

Mechanisms Involved In Graft Rejection

Sensitization phase: Portions of the graft's HLA complex (MHC) are processed and presented as 'antigen', recognition of antigen by T-cells triggers lymphocyte proliferation.

Effector phase: The host immune system attacks the graft, destroying it through antibodies and cytotoxins.

Clinical Manifestations of Graft Rejection

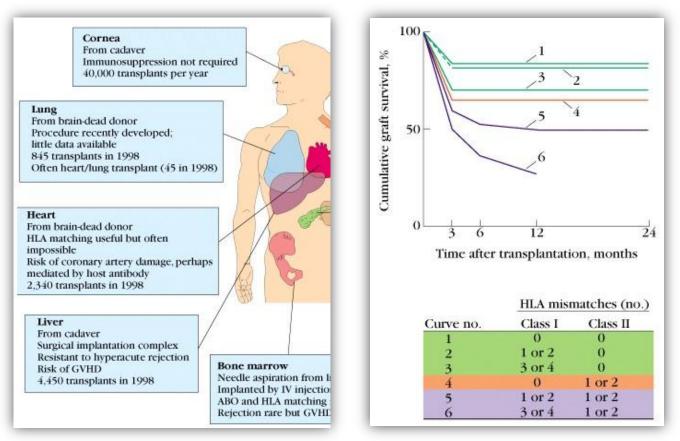
Hyper-acute Rejection	Acute Rejection	Chronic Rejection
Very quick Minutes-hours	10 days (cell mediated)	Months-years (both cell mediated & humoral)

Chronic Rejection

- This occurs *months to years* after engraftment
- Main pathologic finding in chronic rejection is atherosclerosis of the vascular endothelium
- Main cause of chronic rejection is not known
 - Minor histocompatibility antigen miss match
 - Side effects of immunosuppressive drugs

 Neutrophil lytic enzymes destroy endothelial cells; platelets adhere to injured tissue, causing vascular blockage
Platelets

Graft vs. Host Reaction (GVH)


- Occurs in about two thirds of *bone marrow transplants*
- Occurs because grafted immunocompetent T cells proliferate in the irradiated* immunocompromised host and reject cells with foreign proteins resulting in sever organ dysfunction
- Donor's *T-cytotoxic cells* play a major role in destroying the recipient's cells
- Symptoms are: maculopapular rash, jaundice, hepatosplenomegaly and diarrhea
- GVH reactions usually end in *infections and death*

Irradiated: a process in which the patient is expose to radiation, to suppress immunity.

HLA Typing in the Laboratory

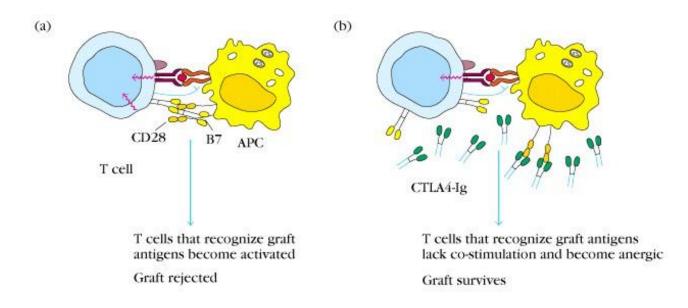
- Prior to transplantation laboratory test commonly called as *HLA typing* or tissue typing to determine the closest MHC match between the donor and recipient is performed.
- Methods:
 - DNA sequencing by Polymerase Chain Reaction (PCR) (most common)
 - Serologic Assays
 - Mixed Lymphocyte Reaction (MLR) (best but least used, due to equipment)
 - Cross matching (D) lys +(R) serum + complement

Tissue Matching

The only graft that does not need tissue matching: **'cornea'**

Effect of HLA class I & II matching on survival of grafts (II is more important)

Immunosuppression Therapy


General Therapy

- **Mitotic inhibitor:** azathioprine (pre & post)
- Corticosteroids
- Cyclosporine*
- Total lymphoid irradiation*

Specific Therapy

- **MABs*** to T cell components or cytokines
- Agents that blocking co-stimulatory signal

Cyclosporine: it reduces the activity of the immune system by interfering with the activity and growth of T cells. **Total irradiation**: total immunosuppression by radiation. **MABs:** 'Monoclonal antibody therapy' Monoclonal antibodies are designed to recognize and attach to specific proteins on the surface of cells.

Agents blocking the co-stimulating signal cause the T-cell to become anergic (inactive)

Downsides of Therapy

- Must be maintained for life
- Toxicity
- Susceptibility to infections
- Susceptibility to tumors

MCQs

1. Which one of the following classes of MHC is found on the surface of B cells:

- A) I
- B) II
- C) III
- D) All the above

2. A patient developed atherosclerosis after getting kidney transplantation. Which type of rejection is this?

- A) Hyper-acute
- B) Acute
- C) Chronic
- D) None of the above

3. Location of MHC is on:

- A) Long arm of chromosome 9
- B) Short arm of chromosome 9
- C) Long arm of chromosome 6
- D) Short arm of chromosome 6

4. Graft versus host reaction occurs most commonly in

- A) Bone marrow transplant
- B) Skin grafting
- C) Kidney transplant
- D) Heart transplant

5. What is the most common HLA typing in laboratories?

- A) Mixed Lymphocyte Reaction
- B) Cross matching
- C) Immunofluorescence
- D) DNA sequencing