
# ACID-BASE DISORDERS





Renal Block



#### **OBJECTIVES**

- I. To explain the principles of blood gas and acid-base analysis.
- II. To interpret blood gas analysis and diagnose various acid base disorders.
- III. Describe causes of acid base disorders.
- IV. Understand use of acid base nomograms.

- PCO2= 35-45 mmHg
   If the problem in the PCO2, it is respiratory acidosis or alkalosis.
- HCO3- = 22-26 mEq/L
  If the problem in the HCO3, it is metabolic acidosis or alkalosis.

Depending on the underlying problem the compensation mechanisms differ :

Respiratory problem

Kidney can brings

Metabolic compensation

Metabolic problem

Respiratory compensation

(hypo/hyperventilation)

Buffer system

Compensation: The body response to acid-base imbalance

Complete compensation: if the PH back into the normal limits.

Partial compensation: if the PH still outside the normal range.

#### **ACID-BASE IMBALANCE: ACIDOSIS**

#### Causes

## Compensation

#### **A- Respiratory:**

- CNS depression (anaesthesia).
- Resp muscle paralysis/ diaphragm paralysis, rib fractures, etc..
- Obstructive lung diseases e.g. Emphysema.
- Pulmonary edema.



Carbonic
acid excess
caused by
blood levels
of CO<sub>2</sub> above
45 mm Hg.

Kidneys
eliminate
hydrogen ion
and retain
bicarbonate
ion.

Kidney also generates new bicarbonate.

#### **B- Metabolic:**

Bicarbonate deficit: blood conc. of HCO3- drops below 22mEq/L.

- Diabetic ketoacidosis.
- Severe diarrahea.(loss of HCO3).
- Hypoaldosteronism.
- Acute renal failure (fail to excrete H+).
- Accumulation of acids.



Increased ventilation.

Renal excretion of hydrogen ions if possible.

K+ exchanges
with excess
H+ in ECF
( H+ into
cells, K+ out
of cells).

#### **ACID-BASE IMBALANCE: ALKALOSIS**

### Causes

## compensation

#### **A- Respiratory:**

Carbonic acid deficit:  $pCO_2$  is <35mmHg (hypocapnea).

Most common acid-base imbalance.

- Hyperventilation:
- High altitude (Oxygen deficiency).
- Hysterical.
- Anorexia nervosa.
- Early salicylate intoxication.

Conditions that stimulate respiratory center and wash out CO2 (Hyperventilatio n):

Kidneys conserve hydrogen ion.

Excrete bicarbonate ion.

#### **B.** Metabolic:

Blood conc. Of HCO3 is > 26mEq/L.

- Severe vomiting = loss of stomach acid or heavy ingestion of antacids.
- Severe dehydration.
- Excess antacids & alkaline drugs.
- Hyperaldosteronism. (endocrine disorders).

Kidney excretes alkaline urine and retain H+.

Respiratory compensation difficult (hypoventilation limited by hypoxia).

## Compensation

#### **Respiratory Acidosis**

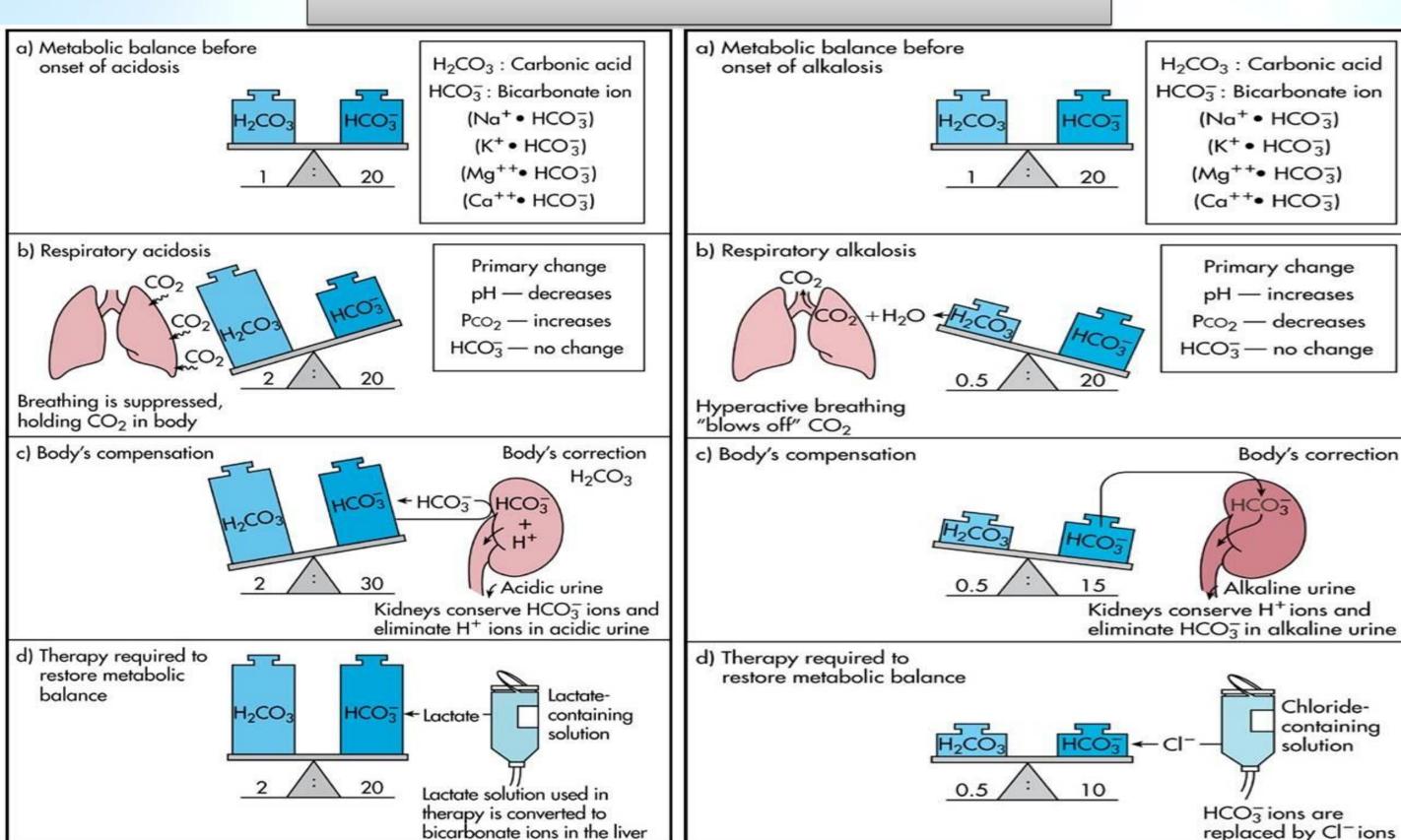
- Kidneys eliminate hydrogen ion and retain bicarbonate ion.
- Kidney also generates new bicarbonate.

#### **Metabolic Acidosis**

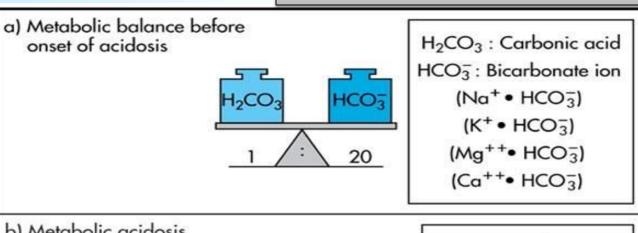
- Increased ventilation
- Renal excretion of hydrogen ions if possible
- K+exchanges with excess H+ in ECF
- (H+ into cells, K+ out of cells)

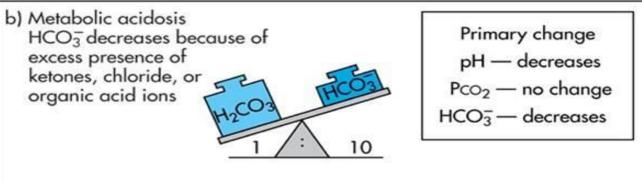
#### **Respiratory Alkalosis**

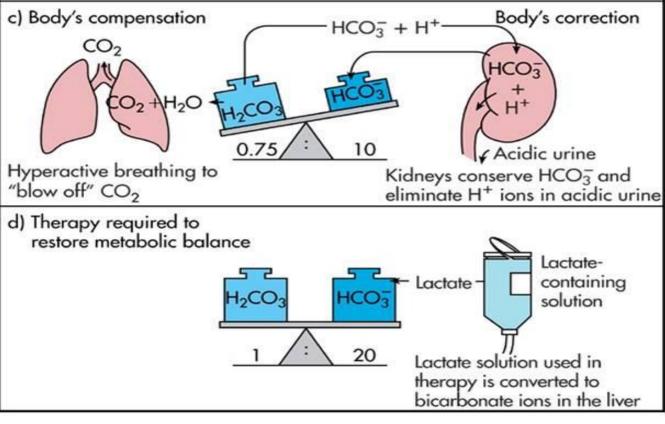
Kidneys conserve hydrogen ion Excrete bicarbonate ion

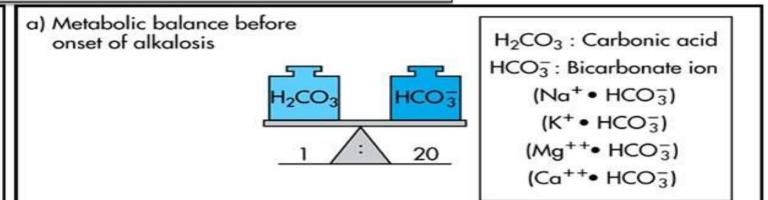

#### **Metabolic Alkalosis**

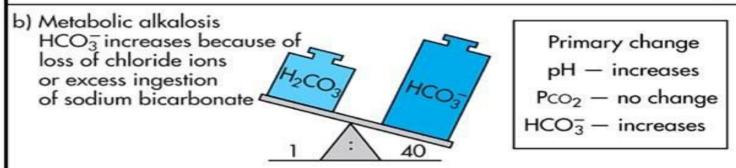
- Kidney excretes alkaline urine and retain H+
- Respiratory compensation difficult –
   hypoventilation limited by hypoxia

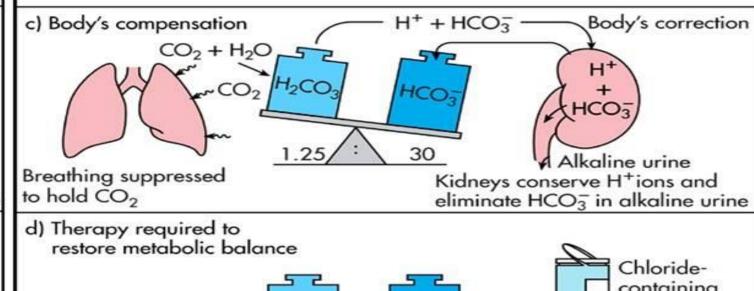

| Effects of acidosis                                                                                                                                                                                                                                                                                                    | Effects of alkalosis                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Principal effect of acidosis:</li> <li>depression of the CNS through ↓ of synaptic transmission.</li> <li>Generalized weakness.</li> <li>Deranged CNS function the greatest threat.</li> <li>* Severe acidosis causes:         <ul> <li>Disorientation.</li> <li>Coma.</li> <li>Death.</li> </ul> </li> </ul> | <ul> <li>Alkalosis causes over excitability of the central and peripheral nervous systems.</li> <li>Numbness.</li> <li>Lightheadedness.</li> <li>It can cause: <ul> <li>Nervousness.</li> <li>muscle spasms or tetany.</li> <li>Convulsions.</li> <li>Loss of consciousness.</li> <li>Death.</li> </ul> </li> </ul> |


<sup>\*</sup>almost always the causes of acidosis or alkalosis are respiratory or metabolic.


#### **RESPIRATORY: ALKALOSIS AND ACIDOSIS**





#### METABOLIC: ACIDOSIS AND ALKALOSIS














#### **Diagnosis of Acid-Base Imbalances:**

- 1) Note whether the pH is low (acidosis) or high (alkalosis)
- 2) Decide which value,  $pCO_2$  or  $HCO_3^-$ , is outside the normal range **and** could be the **cause** of the problem.

If the cause is a change in  $\underline{pCO_2}$ , the problem is respiratory. If the cause is  $\underline{HCO_3}$ : the problem is metabolic.

#### The change in PH:

If pH is normal (between 7.35-7.45) Compenstaed If pH is abnormal (<7.35 or >7.45) uncompenstated.

### Is the cause Respiratory or metabolic?

If PCO2>45 = Respiratory acidosis

If PCO2<35= Respiratory alkalosis

If HCO3-< 22= Metabolic acidosis.

If HCO3-> 26 = metabolic alkalosis.

The difference between diarrhea and vomiting:
In diarrhea: cause metabolic acidosis due to loss of bicarbonate from intestine so the PH will decrease.
In vomiting: cause metabolic alkalosis due to loss of HCL so the PH will increase.

#### Example 1:

A patient is in intensive care because he suffered a severe myocardial infarction 3 days ago. The lab reports the following values from an arterial blood sample:

#### pH =7.21, PCO2= 42, HCO3- = 12:

To answer it List the condition

First: acidosis or alkalosis,

Second :metabolic or respiratory

Third: compensated or uncompensated?

The answer: Metabolic acidosis, uncompensated

#### Example 1:

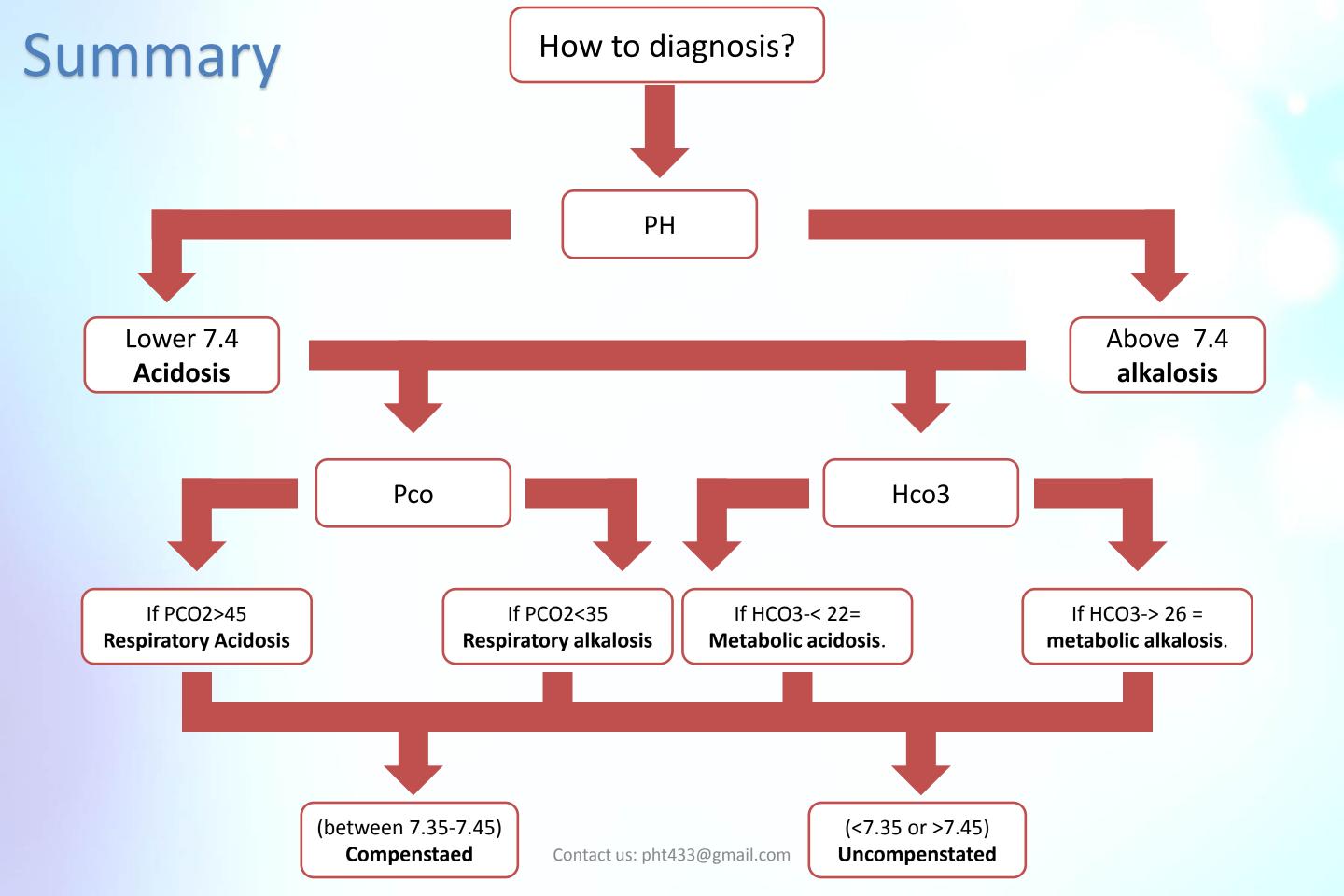
A 50 year-old man with history of type 2 diabetes was admitted to the emergency department with history of polyuria. On examination he had rapid and deep breathing. Blood analysis showed glucose level of 400 mg/dl.

The following is the arterial blood analysis report of this patient:

pH = 7.1, PCO2 = 40 mmHg and HCO3- = 18 mmol/L

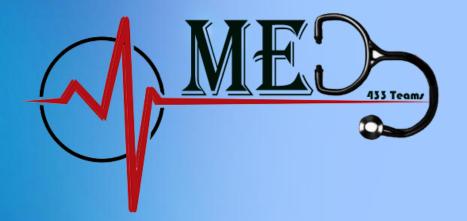
The answer: Metabolic acidosis, uncompensated

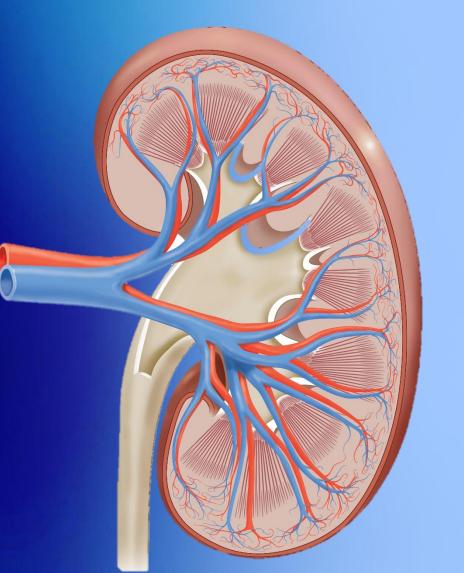
## **Example 2:**


pH = 7.36, PCO2= 54, HCO3- = 32:

the answer: respiratory, acidosis, compensated

## **Example 3:**


pH =7.38, PCO2= 38, HCO3- = 25:


The answer: normal



| Q1.which of the following cause acidosis?  A. Hyperaldosteronism  B. Sever vomiting  C. Hyperventilation  D. Sever diarrhea                           | Q3. A patient is seen in the emergency department with following blood value PH=7.8,HCO3- =29,PCO2 =38 what is the acid-base disorder?  A. Respiratory Acidosis B. Respiratory Alkalosis C. Metabolic Acidosis | Ans: 1.D    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Q2.How the kidney compensate alkalosis?  A. The kidney conserves H+ And excretes CHO-B. K+ exchanges with excess H+ in ECF C. Hyperventilation D. A+C | Q4.In the conversion from acute to chronic respiratory alkalosis, what happen to blood PH?  A. Increase B. Decrease to normal C. Severe decreasing D. Constant                                                 | 2.A 3.D 4.B |

| Q1.How does the kidney compensate of respiratory acidosis? Kidney will eliminate H+ ions and retain HCO3-ions, also generates new HCO3-                                                                                | Q3.What is "Anorexia nervosa"? An emotional disorder characterized by an obsessive desire to loose weight by refusing to eat, so it will cause alkalosis.                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q2.what is the difference between vomiting and diarrhea an acid-base imbalance? Vomiting: is combined with excessive loose of acid.  Diarrhea: is combined with low absorption of HCO3- due to high flow fluid go out. | Q4.a patient is in ER because she travels to high Altitude for 5hrs . The report as following . PH=7.49 PCO2=25 PHCO3=21 What is the diagnosis ? Respiratory alkalosis uncompensated |





## Renal Block



#### **DONE BY:**

Arwa Alnasseb
Aisha Alsafi
Amjad Albatli
Rahma Alshehri
REVISED BY:
Ahmad Alzoman