

UNITI

Textbook of Medical Physiology, 11th Edition

Homeostasis I

Dr Mohammed Alotaibi, MRes, Ph.D.

GUYTON & HALL

Objectives

At the end of this session, the students should be able

to:

- Understand the concept and importance of homeostasis.
- Understand how the steady state is monitored.
- Review the compensatory responses to any change in the steady state.
- Review the disturbances of volumes of ECF and ICF.

Extracellular and Intracellular Fluids

	Plasma (mOsm/L H ₂ O)	Interstitial (mOsm/L H ₂ O)	Intracellular (mOsm/L H ₂ O)
Nat	142	139	14
K*	4.2	4.0	140
Ca**	1.3	1.2	0
Mg**	0.8	0.7	20
Q-	108	108	4
HCO3	24	28.3	10
HPO ₄ , H ₂ PO ₄	2	2	11
SO ₂	0.5	0.5	1
Phosphocreatine			45
Carnosine			14
Amino acids	2	2	8
Creatine	0.2	0.2	9
Lactate	1.2	1.2	1.5
Adenosine triphosphate			5
Hexose monophosphate			3.7
Glucose	5.6	5.6	
Protein	1.2	0.2	4
Urea	4	4	4
Others	4.8	3.9	10
Total mOsm/L	301.8	300.8	301.2
Corrected osmolar activity (mOsm/L)	282.0	281.0	281.0
Total osmotic pressure at 37 °C (mm Hg)	5443	5423	5423

Extracellular and Intracellular Fluids

ids

• Ion fluxes are restricted and move selectively by active transport.

 Nutrients, respiratory gases, and wastes move unidirectionally.

• Plasma is the only fluid that circulates throughout the body and links external and internal environments

 Osmolalities of all body fluids are equal; changes in solute concentrations are quickly followed by osmotic changes

Continuous exchange of Body Fluids

Concept of Homeostasis

Homeostasis:

The maintenance of nearly constant conditions in the internal environment

Claude Bernard (1813 - 1878)

Concept of Homeostasis

• The internal environment of the body (ECF) is in a dynamic state of equilibrium

• All different body systems operate in harmony to provide homeostasis

• Extreme dysfunction leads to death; moderate dysfunction leads to sickness.

Homeostatic control mechanism

- The <u>variable</u> produces a change in the body
- The three interdependent components of **control mechanisms** are:
- **Receptor** monitors the environments and responds to changes (stimuli)
- **Control center** determines the set point at which the variable is maintained
- Effector provides the means to respond to the stimulus

Regulation of body functions

- 1. Nervous system
- sensory input.
- - central nervous system.
- motor output.
- 2. Hormonal system
- - Endocrine glands.
- Pancreas, thyroid
- e.g. : insulin control glucose level.

Homeostatic control mechanism

Examples of Homeostasis

Homeostatic Imbalance

• **Disturbance** of homeostasis or the body's normal equilibrium.

Control of Homeostasis

- Successful compensation:
 - homeostasis re-established
- Failure to compensate:
 - pathophysiology
 - illness
 - death

Regulation of fluid exchange

- <u>Osmotic equilibrium</u> is maintained between intracellular and extracellular fluids
- Small changes in concentration of *solutes* in the extracellular fluid can cause tremendous change in cell volume.
- Intracellular osmolarity = extracellular osmolarity.
- $\approx 300 \text{ mosm/L}$

Mechanisms of movement

3 general mechanisms:

- 1. Simple diffusion (passive)
- 2. Facilitated transport (passive)
- 3. Active transport

> Osmosis

• Is the flow of water across a semipermeable membrane because of differences in *solute concentration*.

Osmosis of Water

Concentration differences of impermeable solutes establish osmotic pressure differences

* Osmosis of water is <u>not</u> diffusion of water

- If environment is:
- Isotonic:
- same
- No change in cell volume
- Hypertonic:
- MORE SOLUTES outside cell
- MORE WATER IN CELL
- over time, cell loses water
- Hypotonic:
- LESS SOLUTES outside cell
- LESS WATER IN CELL, more solutes in cell.
- over time, cell gains water

Cells

- **Isotonic solution :**
- (no swells or shrink)
- 0.9% solution of sodium chloride or 5% glucose .
- same in and out .
- **Hypertonic solution :**
- (shrink) ↑ 0.9%
- - out is higher than in
- **Hypotonic solution :**
- (swelling) $\downarrow 0.9\%$
- in is higher than out

Copyright © 2006 by Elsevier, Inc.

Glucose and other solutions administered for nutritive purposes

- People who cannot take adequate amount of nutrition.
- Slowly.
- Prepared in isotonic solution.

The End

Thank You