

Glucose Metabolism: Gluconeogenesis

- **Objectives:**
 - The importance of gluconeogenesis as an important pathway for glucose production
 - The main reactions of gluconeogenesis
 - The rate-limiting enzymes of gluconeogenesis
 - Gluconeogenesis is an energy-consuming, anabolic pathway

• Gluconeogenesis is an energy-consuming, anabolic* pathway Gluconeogenesis is important to provide the body with glucose when there is no external source of glucose (during prolonged fasting or starvation)

- Occurs in Liver mainly, and in Kidney During Overnight fast:
 - 90% of gluconeogenesis occurs in liver
 - 10% of gluconeogenesis occurs in Kidneys

During Prolonged fast:

- 60% of gluconeogenesis occurs in liver
- 40% of gluconeogenesis occurs in Kidneys
- Gluconeogenesis requires both mitochondrial & cytosolic enzymes.
 EXCEPTION! if gluconeogenesis starts by Glycerol, it will need only the cytosol

Gluconeogenic Pathway

- Seven glycolytic reactions are reversible & are used in gluconeogenesis from lactate or pyruvate.
- Three glycolytic reactions are irreversible & must be reversed (by 4 alternate reactions) in gluconeogenesis.

The 4 alternate reactions in gluconeogenesis to the 3 irreversible glycolytic steps:

Pyruvate Kinase: (PEP \rightarrow Pyruvate)

1- Pyruvate Carboxylase:

Carboxylation reaction, requires Biotin and ATP, occurs in the mitochondria, allosterically activated by acetyl CoA. OAA has to be transported from mitochondria to cytosol. (Pyruvate \rightarrow Oxaloacetate "OAA")

PEPCK:

Decarboxylation & phosphorylation reaction, requires energy (GTP), occurs in cytosol, the enzyme's gene is induced by glucagon & repressed by insulin (Oxaloacetate \rightarrow PEP)

PFK-1: (Fructose 6-P \rightarrow Fructose 1,6 Bisphosphate)

3- Fructose 1,6 **Bisphosphatase:**

Dephosphorylation reaction. It is inhibited by high levels of AMP, and activated by high levels of ATP & low levels of AMP. It is allosterically inhibited by Fructose 2,6bisphosphate (reciprocal regulation with glycolysis) (Fructose 1,6 Bisphosphate \rightarrow Fructose 6-P)

Hexokinase: (Glucose \rightarrow Glucose) 6-P)

4- Glucose 6-**Phosphatase:**

Dephosphorylation reaction, enzyme is found only in liver and kidney (Glucose 6-P \rightarrow Glucose)

Gluconeogenic Substrates* Glycerol

- Glycerol is released during the hydrolysis of Triacylglycerol (TAG) in adipose tissue.
- In liver and kidney, glycerol will be phosphorylated by glycerol kinase (GK)* to glycerol-P.
- Glycerol-P will be oxidized by glycerol-P dehydrogenase to dihydroxyacetone phosphate(DHAP: an intermediate of glycolysis).

*Gluconeogenic Substrates: molecules that can be used to produce glucose through gluconeogenesis pathway

*GK: Glycerol kinase (present only in liver & kidneys)

Gluconeogenic Substrates Glucogenic Amino Acids (AAs)

Gluconeogenic Substrates

Lactate (Cori Cycle)

- Lactate is released into the blood by exercising skeletal muscle & by cells lacking mitochondria (Anaerobic glycolysis of glucose).
- Lactate is taken up by the liver and reconverted to glucose (gluconeogenesis)
- Glucose will then be released to the circulation to be used by skeletal muscles.

Gluconeogenic pathway

There are 4 unique enzymes required for reversal of the 3 irreversible reactions (rate limiting) of Glycolysis :

1-Pyruvate carboxylase (reverses the action of Pyruvate kinase)

2-PEP-carboxykinase (reverses the action of Pyruvate kinase)

3- Fructose 1,6 Bisphosphatase (reverses the action of PFK-1)

4- Glucose 6-phosphatase(reverses the action of Glucokinase)

Energy consumed Six High-Energy phosphate Bonds are cleaved & Two NADH are oxidized

Gluconeogenic pathway

Enzyme	Function
Pyruvate carboxylase (reverses the action of Pyruvate kinase)	Transferring CO2 to Pyruvate (Mitochondria) → Oxaloacetate (has to be transformed to cytosol so it's reduced to malate) Requires Biotin and ATP – Activated by acetyl CoA
PEP-carboxykinase (reverses the action of Pyruvate kinase)	Malate is reoxidized to oxaloacetate in the cytosol. PEP-CK converts oxaloacetate to phosphoenolpyruvate. The enzyme's gene is induced by glucagon & repressed by insulin
Fructose 1,6 Bisphosphatase (reverses the action of PFK-1)	Dephospholyration of F1,6-P → F6-P Inhibited by High AMP and allostrically by F2,6-P , Activated by High ATP and Low AMP
Glucose 6-phosphatase (reverses the action of Glucokinase)	Only In Liver and kidney ! Dephospholyrstion of Glucose 6-P → Glucose .

Gluconeogenic Regulation

Made by the biochemistry team:

biochemistry434@gmail.com 8 8 8 80

لينة الجرف
سارة المبرك
ارياف السلمة
شيخة الدوسري
نهى القويز
مشاعل امين
جمانة فطاني
اميرة بن زعير

محمد المعشوق محمد الخراز أنس الزهراني محمد الدماس أسامة عبد القادر محمد الصبيح عبدالعزيزالسعود

نوف العريني رنا الجنيدل ريما الرشيد حنان عبدالمنعم نجود الرشيد رنا البراك فتون المطيري

Helping videos:

