

# MOLECULAR BIOLOGY

Color index:

Red and orange: Important

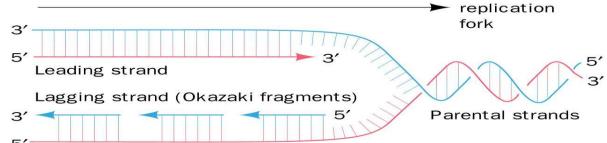
Dark Blue: Further explanation

\*To understand DNA replication

\*To know the transcription of genetic material into messenger RNA

\*To get an idea about the translation of mRNA into a functional protein.

## Features of DNA replication in Eukaryotes:


DNA replication model:

Semiconservative model (one parental strand and newly replicated strand).

The direction of DNA replication:

Bidirectional replication (in two directions) with multiple origin.

- Primed by short stretches of RNA.
- DNA replication is Semi-discontinuous :
- The leading strand is continuous (in the direction of the replication fork) the lagging strand is discontinuous (the opposite direction of the replication fork).



#### Proteins involved in DNA replication:

| Enzyme name                   | Function                                                                                   |
|-------------------------------|--------------------------------------------------------------------------------------------|
| Helicase                      | Unwinds parental double helix                                                              |
| Single-strand Binding protein | Stabilizes separate strands                                                                |
| DNA Primase                   | Adds a short segment of RNA primer to template strand                                      |
| DNA polymerases               | Forms new strands and removes RNA primer and inserts the correct bases                     |
| DNA Ligase                    | Joins Okazaki fragments (in the lagging strand) and seals gaps in sugar-phosphate backbone |

#### Other proteins:

\*Topoisomerases:

Topoisomerase I.

Topoisomerase II.

\*Telomerases

#### 1)Steps in DNA replication:

Helicase

protein binds to DNA sequences called origins and unwinds DNA strands.

proteins

binding proteins prevent single strands from rewinding

Primase

makes a short segment of RNA primer complementary to the DNA.

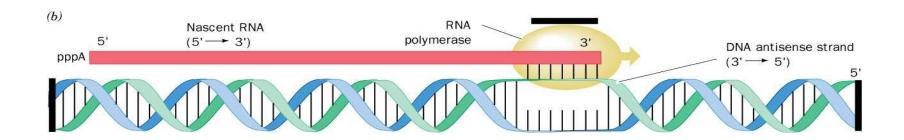
 enzyme adds DNA nucleotides to the RNA primer and proofreads(corrects) bases added and replaces incorrect nucleotides

Then

- \*Leading strand synthesis continues in a 5' to 3' direction \*Discontinuous synthesis produces 5'to3'DNA segments called Okazaki fragments

Polymera

 Exonuclease activity of DNA polymerase removes RNA primers then DNA polymerase fills the gaps


Ligase

forms bonds between sugar-phosphate backbone

2)Transcription: A gene is transcribed to mRNA. Only one of the The direction of DNA strands is transcription is 5° Transcription transcribed (antisense  $\rightarrow$  3'. strand). The RNA polymerase II is responsible for this process.

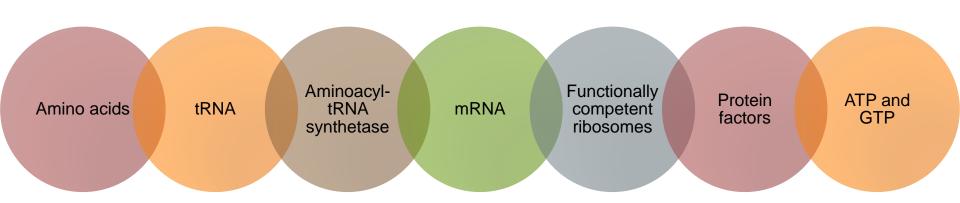
## Steps of mRNA synthesis:

| Steps               | Details                                                                                                                                               |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1)Chain initiation  | RNA polymerase binds to promoter region of DNA to start transcription.                                                                                |
| 2)Chain elongation  | <ul><li>a) A portion of DNA template unwinds (opens) at the point of RNA synthesis.</li><li>b) This forms a short length of RNA-DNA hybrid.</li></ul> |
| 3)Chain termination | DNA contains specific sites which stop transcription (at a sequence of 4-10 AT base pairs).                                                           |



### Post-transcriptional modification:

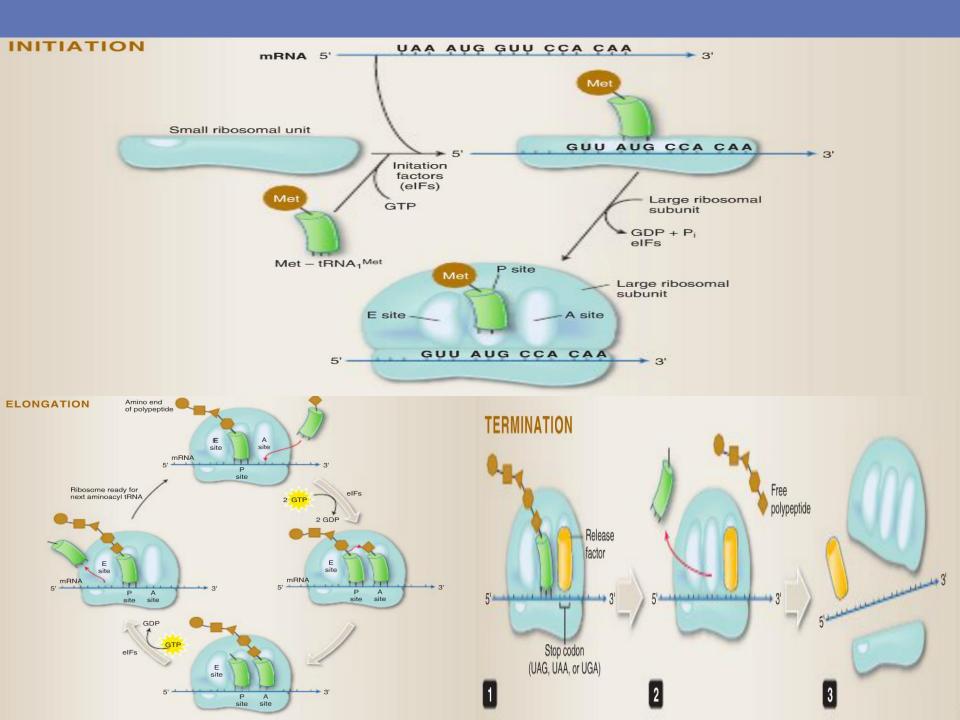
| Туре            | Definition                                                                        | Function                                                                                                                                         |
|-----------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Capping         | Addition of a methylated guanine nucleotide at 5' end of mRNA.                    | <ol> <li>To prevent mRNA degradation by exonucleases.</li> <li>It helps the transcript bind to the ribosome during protein synthesis.</li> </ol> |
| Polyadenylation | Addition of a poly(A) tail (a highly conserved AAUAA sequence) at 3' end of mRNA. | <ol> <li>To protect the mRNA from degradation.</li> <li>For ribosomal RNA recognition.</li> </ol>                                                |


### 3)Translation:

- It is a process of protein synthesis from mRNA.
- mRNA has genetic codes for amino acids present in proteins.
- The genetic code is a dictionary that identifies the correspondence between a sequence of nucleotide bases and a sequence of amino acids.
- Each individual word in the code is composed of three nucleotide bases (codons).

- There are 64 possible codons:
  - 61 codons specify 20 amino acids
  - One start codon (AUG)
  - 3 stop codons

UAA, UAG and UGA


#### Components required for Translation:



## Steps protein synthesis:

Synthesizing protein by Ribosomal RNA from mRNA.
 mRNA has codes present protein.

| Steps               | Details                                                                                                                                                                                                                                     |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1)Chain initiation  | <ul> <li>Combination of Ribosomes, mRNA and tRNA together</li> <li>The first tRNA binds to AUG (start codon)</li> </ul>                                                                                                                     |
| 2)Chain elongation  | The second tRNA bind to A-site of ribosome  ☐ Peptide bond formation takes place between two amino acids ☐ P-site tRNA is empty and leaves the ribosome ☐ A-site tRNA carries the growing protein chain and moves to P-site (translocation) |
| 3)Chain termination | mRNA contains stop codons (UAA,UAG,UGA)  Uhen ribosomes reads any stops codon the translation is terminated                                                                                                                                 |



#### Videos

- 1) A nice video talking about the central dogma.. it has little detail but it is very good.
- http://www.youtube.com/watch?v=yqESR7E4b\_8
- 2) DNA Replication animation
- http://www.youtube.com/watch?v=vNXFk\_d6y80
- 3)DNA Transcription animation
- http://www.youtube.com/watch?v=WsofH466lqk
- 4)DNA Translation animation
- http://www.youtube.com/watch?v=Nm5yzrd28rs
- 5) Transcription and translation شرح
- http://www.youtube.com/watch?v=6YqPLgNjR4Q
- Quiz:
- https://www.examtime.com/en/p/1465062

### Biochemistry team:

- لمي القحطاني
  - نجود الرشيد
    - حنان محمد
    - رنا البراك
- اسامة عبدالقادر فتون المطيري •
- محمد الصبيح ارياف السلمة •
- - مشاعل امین
  - جمانة فطاني
  - ر نا الجنيدل
  - لينة الجرف
  - سارة المبرك
- أميرة بن زعير
  - نوف العريني •

- محمد الخراز
- محمد الدماس -
- أنس الزهراني -
- عبدالعزيز السعود وشيخة الدوسري
  - محمد المعشوق نهى القويز -