

OBJECTIVES:

By the end of this lecture, students should be able to appreciate the possibility of atypical patterns of inheritance with special emphasis on:

- 1. Codominant traits
- 2. Pseudodominant inheritance
- 3. The mitochondrial inheritance
- 4. Anticipation
- 5. Pleiotropy
- 6. Variable expressivity
- 7. Heterogeneity
- 8. New mutation
- 9. Complex trait: multifactorial/Polygenic

ATYPICAL PATTERNS OF INHERITANCE

Inheritance of Codominant Alleles

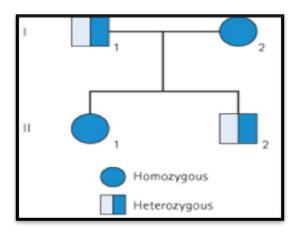
Codominance: two allelic traits that are both expressed in the heterozygous state.

Example: Blood group **AB**: the **A** and **B** blood groups are **codominant**.

Possible genotypes, phenotypes & gametes at the ABO locus

Genotype	Phenotype	<u>Gamete</u>
AA	А	А
BB	В	В
00	0	0
AB	AB	A or B
AO	A	A or O
ВО	В	B or O

If the alleles are **different**, the dominant allele usually will be **expressed**, while the effect of the other allele(<u>the recessive</u>), is **masked**. In **codominance**, however, neither allele is recessive and the phenotypes of both alleles are **expressed**.


Don't be confused here, the third column is for the possible genotypes of **gametes(zygote)**

PSEUDODOMINANT INHERITANCE

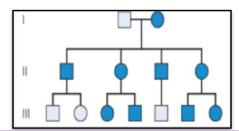
- ♦ A woman homozygous for an autosomal recessive disorder whose husband is heterozygous for the same disorder.
- → Their children have a 1 in 2 (50%) chance of being affected (homozygous) i.e. pseudodominant

Pseudodominance is the situation in which the inheritance of an autosomal recessive trait mimics an autosomal dominant pattern.

Pedigree:

Pseudodominant inheritance

Atypical inheritance of single-gene disorders


What are the situations in which the inheritance of single-gene disorders **diverges(different)** from typical mendelian patterns?

- ♦ Mitochondrial Inheritance
- ♦ Anticipation
- ♦ Atypical Presentation For Autosomal Dominant Defects
- ♦ Multifactorial/ Polygenic Disorders

Mitochondrial Inheritance

Mitochondrial DNA (mtDNA)

- Mitochondria (& their DNA) are inherited from the mother (through ova).
- mtDNA is a small circular double-stranded molecule containing 37 genes.

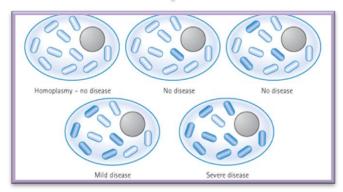
Males cannot transmit the disease as <u>the cytoplasm</u> is inherited **only from the mother**, and mitochondria are present in the cytoplasm.

Mitochondrial Disorders

A STATE OF THE PARTY OF THE PAR

- ♦ The defective gene is present on the mitochondrial DNA.
- Show maternal inheritance:
 - Affected **mother** transmits the disorder **equally to all** her children
 - Affected **father does not** transmit the disease to his children.
- Example of Mitochondrial Disorders:
- Lebers hereditary optic neuropathy (Rapid Optic nerve death → blindness in young adult life)

Mitochondrial Inheritance


Human Genetics

Homoplasmy vs. Heteroplasmy

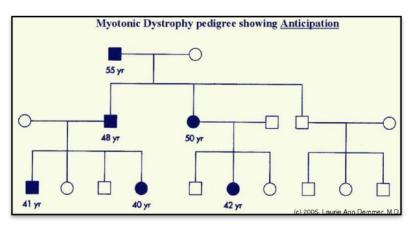
- Homoplasmy = in most persons, the mtDNA from different mitochondria is identical.
- Heteroplasmy = the presence of two populations of mtDNA in a cell; the normal mtDNA & the mutant mtDNA.

The progressive effect of **Heteroplasmy** on the clinical severity of mitochondrial genetic disorders .

A STATE OF THE PARTY OF THE PAR

- Low proportions of mutant mitochondria are not associated with disease
- ♦ As the proportion increases, the disease will be manifested.

ANTICIPATION


- A pattern of inheritance in which individuals in the most recent generations of a pedigree develop a disease at an earlier age or with greater severity than do those in earlier generation.
- ♦ Examples of diseases showing anticipation:

Huntington disease

Myotonic dystrophy

- Autosomal dominant disease.
- the expansion of trinucleotide repeat polymorphisms in the 3' on this gene in chromosome 19 is the reason of anticipation phenomena in myotonic dystrophy.

Pedigree:

Myotonic Dystrophy

Atypical presentation for Autosomal Dominant defects

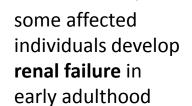
Pleiotropy

- a single gene that may give rise to two or more apparently unrelated effects.
- Example: In tuberous sclerosis: affected individuals can present with either learning difficulties, epilepsy, a facial rash, or all features.

Reduced penetrance might be due to:

- modifying effects of other genes.
- interaction of the gene with **environmental factors**.

Reduced penetrance


In some individuals **heterozygous** for gene mutations giving rise to certain autosomal dominant disorders there may be no abnormal clinical features, representing so-called reduced penetrance or 'skipping a generation'

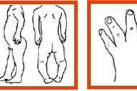
Pleiotropy, reduced penetrance and variable expressivity of a mutant allele need to be taken into account when providing genetic counseling to individuals at risk for autosomal dominantly inherited disorders.

Variable expressivity

- The clinical features in autosomal dominant disorders can show striking variation from person to person, even in the same family.
- Example: In autosomal dominant polycystic kidney disease:

others have just a few **renal cysts** that do not significantly affect renal function

New mutations


The state of the s

- ♦ In autosomal dominant disorders an affected person will usually have an affected parent.
- However, this is not always the case and it is not unusual for a trait to appear in an individual when there is no family history of the disorder.
- → The sudden unexpected appearance of a condition arising as a result of a mistake occurring in the transmission of a gene is called a new mutation.

Achondroplasia

Human Genetics

- A form of short-limbed dwarfism, in which the parents **usually** have normal stature.
- ♦ Diagnosis/testing:
 - Characteristic clinical and radiographic finding.
 - Molecular genetic tests: mutation in the FGFR3 gene on chromosome 4p16.3.
- ♦ The offspring of persons with achondroplasia had a 50% chance of having achondroplasia
- ♦ What other possible explanations for the sudden appearance of this disorder?
 - non-penetrance
 - Variable expressively
 - Non-paternity

The state of the s

MULTIFACTORIAL/POLYGENIC DISORDERS

Human Genetics

Complex traits

- ♦ Complex traits are conditions which are likely to be due to the interaction of more than one gene.
- → Digenic inheritance: where a disorder has been shown to be due to the additive effects of <u>heterozygous</u> mutations at two different gene loci.
- Example: retinitis pigmentosa, (is caused by double heterozygosity for mutations in two unlinked genes)

Monogenic inheritance refers to genetic control of a phenotype or trait by a single gene. Less commonly, the interaction of only two genes is required for expression of a phenotype. a mechanism referred to as digenic inheritance

MULTIFACTORIAL/POLYGENIC DISORDERS

Human Genetics

- Human characteristics could be determined by the interaction of many genes, each exerting a small additive effect(quantitative inheritance).
- ♦ Example:
 - -congenital malformations such as **cleft lip and palate.**
 - -late-onset conditions such as: **Hypertension, Diabetes, Alzheimer**
- The prevailing view is that genes at several loci interact to generate a susceptibility to the effects of adverse environmental trigger factors. (these environmental factor are only harmful if the person is susceptible to that disease)

Genomic Imprinting

Certain chromosomes retain a memory or "imprint" of parental origin that influences whether genes are expressed or not during gametogenesis.

> (If the allele inherited from the father is imprinted, then only the allele from the mother is expressed. And vise versa)

Take Home Message

An accurate determination of the family pedigree is an important part of the workup of every patient

The state of the s

- ♦ Exceptions to mendelian inheritance do occur in single-gene disorders.
- The inheritance pattern of an individual pedigree may be obscured by a number of other factors that may make the mode of inheritance difficult to interpret
- ♦ Some characteristics and many common familial disorders, do not usually follow a simple pattern of Mendelian inheritance.

Done by: Rawa alohali