Bacterial

Structure &

Genetics

LECTURE ONE

*Important *Further explanations

OBJECTIVES:

Define the cellular organization of bacteria and know the differences between • Eukaryotes and Prokaryotes.

Know major structures of bacteria and its functions. •

Know the structure of cell wall of bacteria including ; chemical structure , the o differences between Gram positive and Gram negative bacteria and main functions.

Know short encounter on the bacteria with defective cell wall. •

Know the external structures of bacteria with and functions (flagella, pill and \circ capsule).

Know the cytosol and internal structures of bacteria including ; cytoplasmic • membrane ,nucleoid, ribosomes and cytoplasmic inclusions

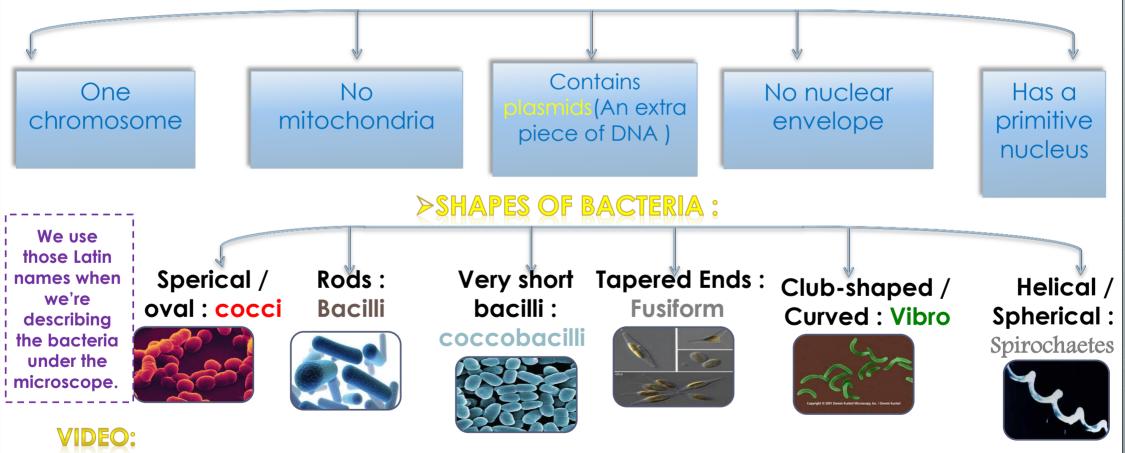
Describe bacterial spores, its chemical structure, function, types and its • application in the practice of medicine.

OBJECTIVES:

Know basic information about bacterial genetics and the meaning of different • terminologies.

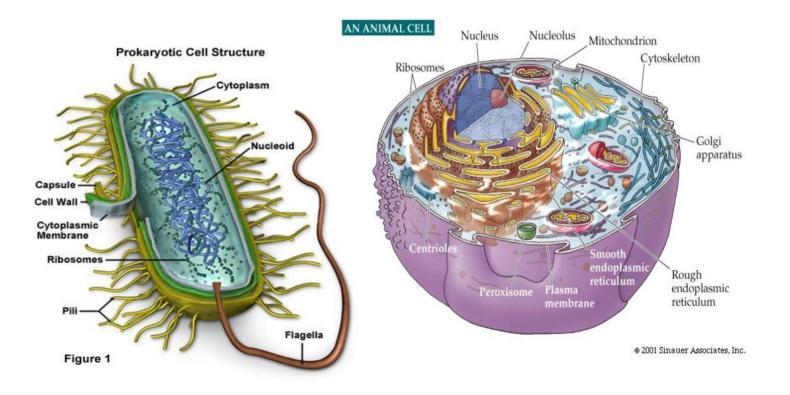
Know the types of bacterial DNA . •

Know brief information about replication of bacteria and bacterial cell division. •

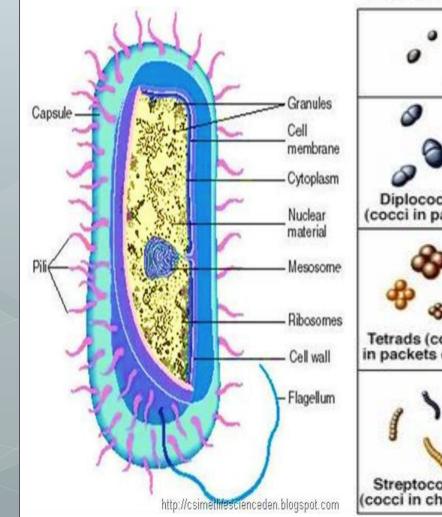

Define plasmids, its origin, types and importance •

Recalls genetics variations, including ; mutation and types of gene transfer. •

Application on bacterial resistance to antimicrobial agents. •


Bacteria : Cells that have a well-defined nucleus are called EUKARYOTES , whereas cells that LACK a nucleus are called PROKARYOTES . ALL BACTERIA ARE PROKARYOTES .

> CHARACTISTICS OF BACTERIA :


http://www.youtube.com/watch?v=fzIKJpcfXfo&list=UUesNt4_Z-Pm41RzpAClfVcg

Prokaryotic vs Eukaryotic Cells

2

Rathleen Park Talaro and Arthur Talaro, Foundations in Microbiology, 3e Copyright © 1999 The McGraw-Hill Companies, Inc. All rights reserved. Bacterial shapes and arrangements

Coccus		Rod, or Bacillus		Curved forms: Spirillum/Spirochete
Diplococci (cocci in pairs)	Neisseriae (coffee-bean shape in pairs)	10	Coccobacilli	Vibrios (curved rods)
Tetrads (cocci in packets of 4)	Sarcinae (cocci in packets of 8,16,32 cells)	Mycobacteria	Corynebacteria (palisades arrangement)	Spirilla
Streptococci (cocci in chains)	Micrococci and staphylococci (large cocci in irregular clusters)	Spore-forming rods	Streptomycetes (moldlike, filamentous bacteria)	Spirochetes

STRUCTURES OF BACTERIA : *CELL WALL :

> The cell wall is the most important

part of of Bacteria and is mostly

Made-up of : PEPTIDOGLYCAN, / important

- The functions of cell wall are :
- 1. Rigidity.
- 2. Gives the bacteria its shape .
- 3. Protection.
- 4. Cell division .
- 5. Porous (preamble to low molecular weight molecules) .
- 6. Antigenic¹ determinants.

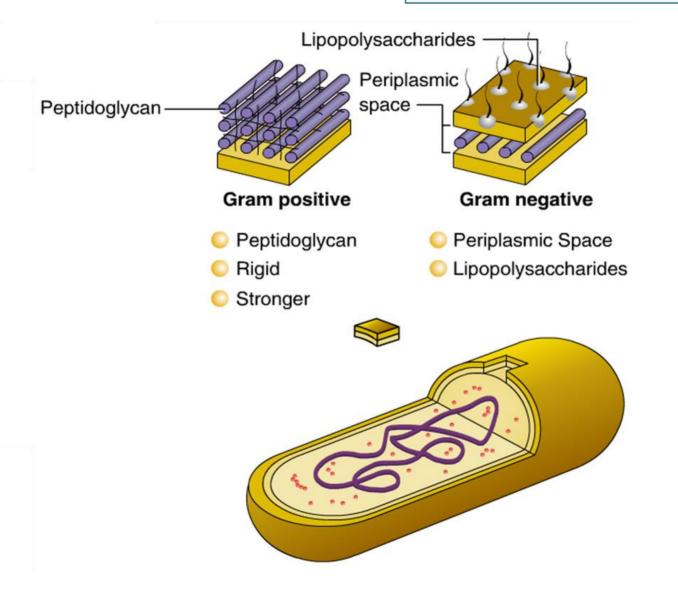
Microbiology

Based on its reaction to Gram Stain it is

*CEMICAL STRUCTER OF (

Gram POSITIVE

divided into two groups :


BACTERIA (3 layers)

chemical structure of bacteria.

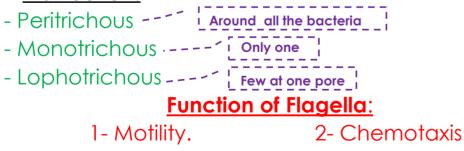
- Thick peptidoglycan
- Closely associated with cytoplasmic membrane .
- Teichoic acids anchors cell-epithelial cell adhesion .
- Antigens –
 *polysaccharides
 (Lancefield)
 *protein (Gnffth)
- ✤ Stain Purple .

Gram Negative BACTERIA (3 membranes)

- Thin or no
- peptidoglycan
- Outer membrane that contains :
- → Speciht protein (porins) –imp in the transport of hydrophilic molecules.
- → Lipoplyscarides & lipids (Endotoxin2)
- \rightarrow Stain red .

STRUCTURES OF BACTERIA :

BACTERIA WITH DEFECTIVE CELL WALL:


Mycoplasma: natural, stable, NO peptidoglycan. Some species of Mycoplasma are pathogenic.

EXTERNAL STRUCTURE OF BACTERIA :

These structures are extended from the cell into the environment .

<u>1- Flagella¹ :</u>

- → Helical filaments
- \rightarrow Found in Gram positive & Gram negative bacteria.
- \rightarrow Composed of protein FLAGELLIN.
- \rightarrow <u>Distribution</u>:

Microbiology

Structure of Flagella

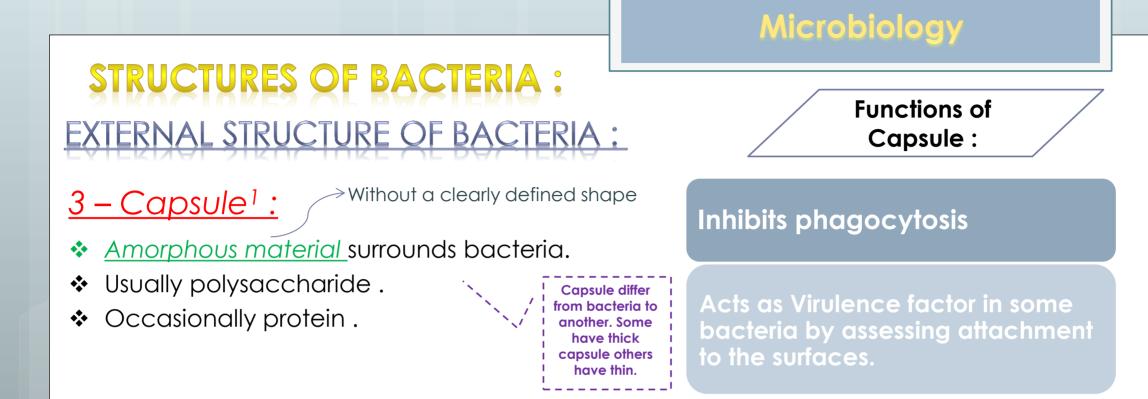
Basal Body : a protein arranged as rings on central rod (<u>4 ring in Gram negative, 2</u> <u>ring in Gram positive</u>).

-outer pair of rings: only in <u>Gram negative</u> pushed through outer membrane. - inner pair of rings : inserted into peptidoglycan & cytoplasmic membrane.

Hook: bent structure -act as joint Long Filament: Flegellin protein

STRUCTURES OF BACTERIA : EXTERNAL STRUCTURE OF BACTERIA :

<u>2 – Philli :</u>

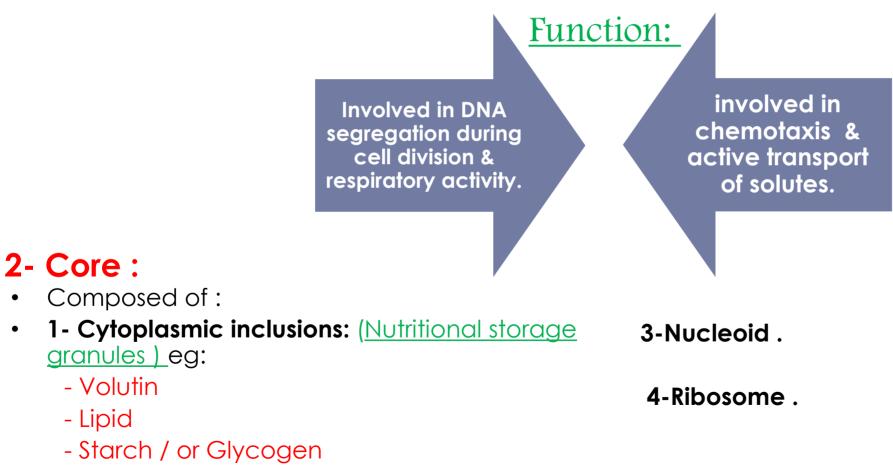

Fine short filaments extruding from cytoplasmic membrane.
 Found on the surface of many *Gram negative & Gram positive* bacteria.
 Composed of protein Pilin.

- covers the surface
- responsible for: adhesion & colonization

2/ Sex pili :

- in some bacteria only
- responsible for conjugation.

- Cytoplasmic membrane (cell membrane) :
 - Double layered structure composed of phospholipid & protein .
 - Act as semi-permeable membrane (passive diffusion).
 - Site of numerous enzymes.


STRUCTURES OF BACTERIA:

۲

•

INTERNAL STRUCTURE OF BACTERIA :

1 - Mesosomes : convoluted invaginations of cytoplasmic membrane.

	Microbiology	
STRUCTURES OF BACTERIA : INTERNAL STRUCTURE OF BACTERIA	Ribosomes are scattered inside the bacteria as there is no ER	
3 Ribosomes	4 Nucleoid (nuclear body)	
Distributed throughout the cytoplasm.	Circular single stranded chromosome (bacteria genome or DNA).	
Site of protein synthesis.	No nuclear membrane.	
Composed of RNA and protein .	DNA undergoes semi-conservative replication , bidirectional from a fixed point.	

STRUCTURES OF BACTERIA : INTERNAL STRUCTURE OF BACTERIA : 5- Spores¹ Not All Bacteria Has Them.

Small ,dense, metabolically inactive , non- reproductive structures produced by **<u>Bacillus & Clostridium</u>**

Enables the bacteria to survive adverse environmental conditions.

Contain high con. of Calcium.

Resistant to heat (over 100C), dissection & disinfectants.

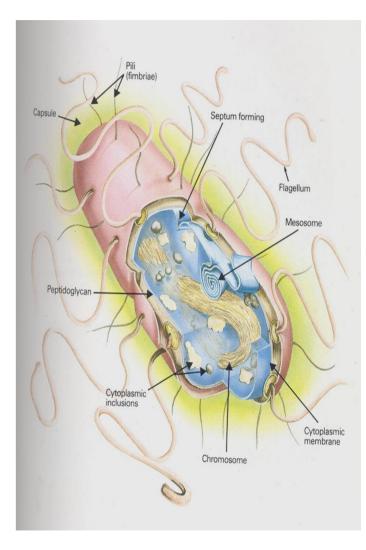
Often remain associated with the cell wall.

Described as :

1-Terminal spores

2- Subterminal spores spores

BACTERIAL GENETICS


DEFINITIONS :

- Genetics is the study of inheritance and variation.
- Genetic information encoded in DNA.

Function of genetic material:

- 1- <u>Replication</u> of the genome.
- 2- **Expression** of DNA to mRNA then to protein.

<u>Genotype:</u>	the complete set of genetic determinants of an organism.
<u>Phenotype:</u>	expression of specific genetic material under particular set of growth condition.
<u>Wild type</u> <u>(active)</u> :	The allele that encodes the phenotype most common in a painucler natural population , any form of that allele other than wild type is known as Mutant (inactive) type from that allele .

bxtra-chromosoma

(plasmid).

*Plasmid id the same as the DNA, but it's not

important as much as the DNA is. Like an

accessory. Bacteria can live and function without

it. * Plasmid id verv useful

for medical engineering.

BACTERIAL GENETICS BACTERIAL DNA 2 TYPES :

- Chromosomal

BACTERIAL CHROMOSOME :

Replication is semi-conservative

- Haploid, circular molecule of double strand DNA attached to cell membrane. No nuclear membrane (prokaryotes).
- Replication is semi-conservative.
- PLASMID :
- Extra-chromosomal DNA composed of double stranded DNA.
- No known Origin
- Govern their own replication
- Bacteria can live with out it only add some functions to certain bacteria (Accessory)
- Very useful in medical engineering .

BACTERIAL GENETICS

TYPES OF PLASMID :

1- R-plasmids:

genes code for antibiotic resistance in Gram negative bacteria.

2-Col-plasmids:

in Enterobacteria, codes for extracellular toxins. 3- **F-plasmids:** (fertility) factor Ex: F⁻ becomes F⁺

GENETIC VARIATION IN BACTERIA :

Mutation

Gene transfer

GENETIC VARIATION IN BACTERIA : MUTATION

- > Inheritable changes in the structure of genes (DNA).
- > Chemical changes in one or more bases of DNA.
- ➢ Result in gene defect.
- Mutation changes the features of the bacteria. That's how we know if there are bacteria or not.
- Inactive mutated form is a mutant allele versus active wild type allele.

*Classification of mutations : Depending on biological sequencing:

1- **Resistance mutation**: affect structure of cell protein.

2- Auxotrophic mutation: affect biosynthetic enzyme resulting in a nutritional requirement of mutant cell.

3- **Lethal mutation.** It can kills the

bacteria

VIDEO: http://www.youtube.com/watch?v=qxXRKVompl8

GENETIC VARIATION IN BACTERIA

RESULT OF GENE DEFECT :

<u>Could result in alteration of :</u>

- Transcription.
- Amino acid sequence.
- Function e.g.<u>: Antibiotic resistance</u> or <u>Lethal:</u> undetected mutation.
- Types :
- Base substitution(replacemen) .
- Deletion
- Insertion
- Inversion
- Duplication (common)

<u>GENE EXCHANGE :</u>

ALL

EXAMPLES OF

THESE ARE

IMPORTANT!!

Three types:

- 1- Transformation
- 2- Transduction
- 3- Conjugation.

TRANSFORMATION :

It is the transfer of genes from one cell to anthoer cell By means of naked DNA .

Common in : 1- <u>Haemophilus influenza</u> <u>Strept coccus pneumonia</u>.

GENETIC VARIATION IN BACTERIA : GENE TRANSFER :

TRANSDUCTION :

Transfer of genes from one cell to anther via a PHAGE¹ FACTOR (virus) .

- <u>Beta lactamase production in S.</u> <u>aureus</u>,
- <u>Toxin production in</u> <u>Corynebacterium diphtheriae.</u>

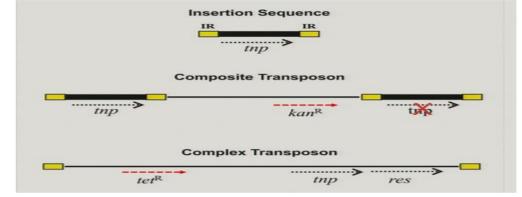
The process by which bacteria transfer genes from one cell to anther by Cell to cell contact *mating*

- Plasmid mediated .
- Differs between Gram + and Gram .

Gram + :

• It involves clumping of cells and secretion of phermones.

<u>CONJUGATION :</u> -


Gram-:

- Mediated by plasmid called **F factor** (fertility).
- Gene encode changes in surface by producing a sex pilus

GENETIC RECOMBINATION: AFTER GENE TRANSFER THERE ARE 3 FATES :

- 1-Exogenous DNA degraded by nuclease.
- 2-Stabilized by circulation, become plasmid.
- 3- Form a partially hybrid chromosome with segment derived from each source.

TRANSPOSABLE ELEMENTS :

• IS the DNA sequence that can change its position with in the genome, so sometimes Creating or Reversing MUTATION and altering the cells genome size "Jumping Genes".

Jumping ge

- Types: 1- Transposons.
 - 2-Insertion sequence.

Thank you

DONE BY:

- Alhanouf AlMohanna
- AlJouhara AlDahsh
- Abudalaziz AlMani
- Amal Afrah
- Aya AlDayel
- Deema AlRajhi
- Dhaherah AlJohani
- Hanan Khoshaim

Microbiology

- Jawaher AlOmran
- Manal AlHamdan
- Nouf AlMasood
- Rawa AlOhali
- Reema Hazazi
- Reema AlHammad
- Wajda AlHathali

MCQ's

Spherical shaped bacteria are called: o

a) Bacilli b)Vibrio c)Cocci

Fine short filament extruding from cytoplasmic membrane: o

a) Flagella b) Pili c) Cilia

Sex Pilli are responsible for: o

a) Conjugation b) Motility c) Digestion

Cytoplasmic membrane of bacteria act as membrane: o

a) Permeable b) Selective c) Semi permeable

Which of the following is involved in DNA segregation and respiratory activity? •

a) Mesosomes b) Ribosomes c) Spores

MCQ's

The site of protein synthesis: o

a) Ribosomes b) Cell membrane c) Pilli

..... enables the bacteria to survive adverse environmental conditions: o

a) Spores b) Nucleoid c) Cytoplasmic inclusion

The complete set of genetic determinants of an organism is its: o

a) Wild type b) Genotype c) Phenotype

Inactive mutated form is a wild type allele. •

a) T b)F

Transformation: A fragment of exogenous naked bacterial DNA are taken up and o absorbed into recipient cell.

a) Tb)F

Additional info. And References :

superscripted words are found in the notes down o below.

Videos o

http://www.youtube.com/watch?v=qxXRKVompl8 •

http://www.youtube.com/watch?v=fzIKJpcfXfo&list=UU • esNt4_Z-Pm41RzpAClfVcg