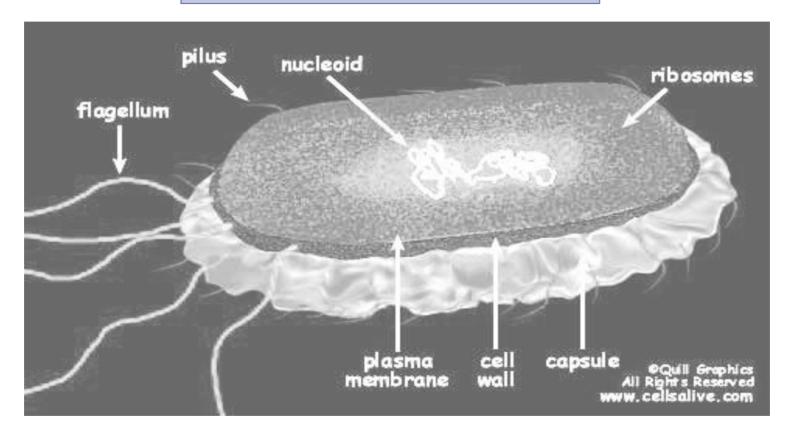
Gram +ve and Gram –ve BACTERIA

Objectives:

By the end of this lecture, the student should able to:

- Know the general basic characteristics of bacteria.
- Differentiate between gram positive and gram negative bacteria characteristics.
- Know the classes and groups of gram positive bacteria, cocci and bacilli (rods).
- Know the common identification characteristic of these groups.
- Know the common infections and diseases caused by these organisms and the antibiotics used for their treatment.
- Know the classes and groups of gram negative bacteria, cocci and bacilli (rods).
- Know the common identification methods for These organisms.
- Know the commonest infectious and diseases caused by these bacteria and the antibiotics used for their treatment.

LECTURE SIX


Red: Important

Blue : Definitions

Green: Examples

Gray: extra information

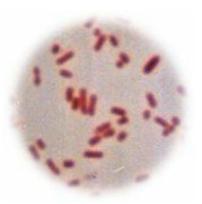
Bacterial structure

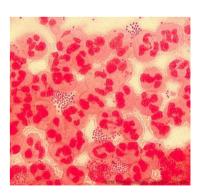
note that the vital component in gram staining is the cell wall, depending on the amount of peptidoglycan.

GRAM STAINING

Developed in 1884 by the Danish physician Hans Christian Gram

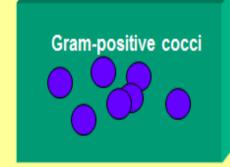
An important tool in bacterial taxonomy, distinguishing so-called **Gram-positive bacteria** (large amount of peptidoglycan), which remain coloured(violet) after the staining procedure, from **Gram-negative bacteria** (small amount of peptidoglycan), which do not retain dye(violet) and need to be counter-stained(red safranine).

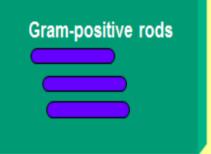

Can be applied to **pure cultures** (lab culture with a single specimen) of bacteria or to **clinical specimens**(swabs, feces, urine.....)

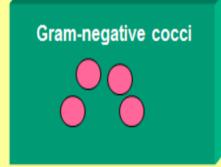

left: Pure culture of *E. coli* (*Gram-negative rods*)

right: Neisseria gonorrhoeae in a smear of urethral pus

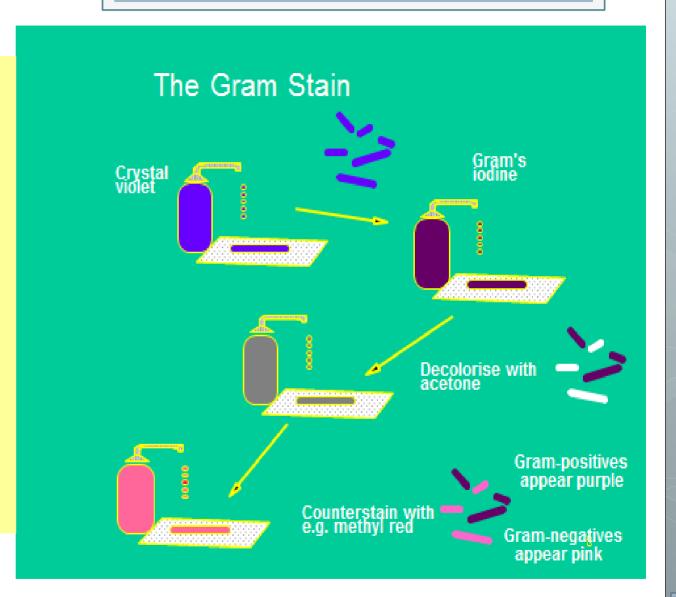
(Gram-negative cocci, with pus cells)

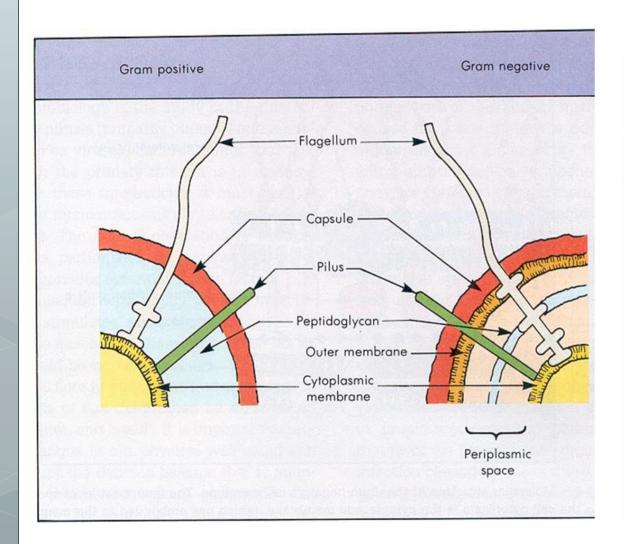

Note that they are both bright red (from safranine)

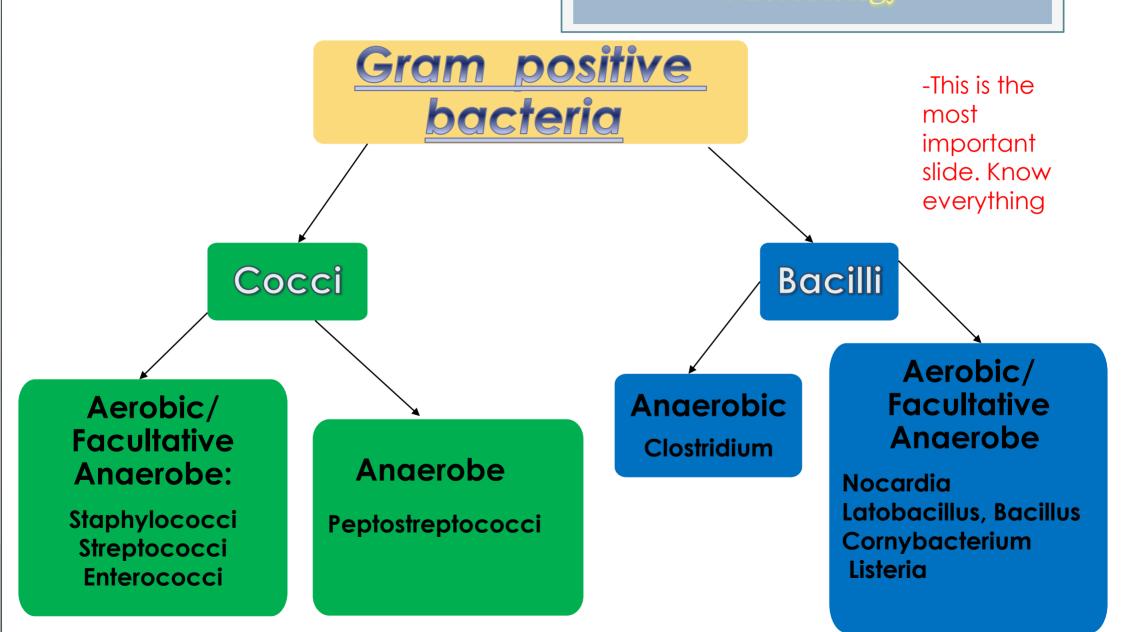




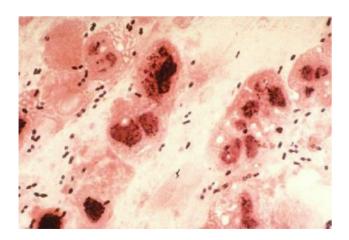
CELL WALL


Gram positive cell wall	Gram negative cell wall	
a thick, homogenous sheath of peptidoglycan 20-80 nm thick	an outer membrane containing lipopolysaccharide (LPS)	
tightly bound acidic polysaccharides, including teichoic acid and lipoteichoic acid	thin shell of peptidoglycan	
	periplasmic space	
	inner membrane	
cell membrane	Lose crystal violet and stain pink from safranin counterstain	
Retain crystal violet and stain purple		




Gram-negative rods

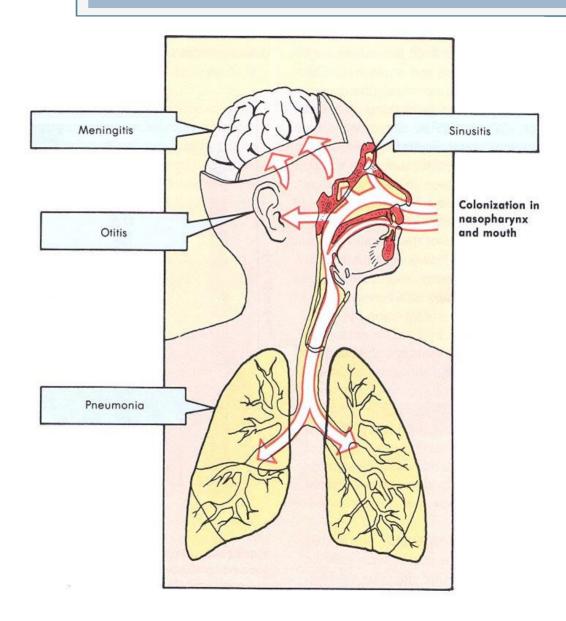
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



	Microscopic Appearance of Cell		Chemical Reaction in Cell Wall (very magnified view)	
Step	Gram (+)	Gram (-)	Gram (+)	Gram (-)
1. Crystal violet				****
Violet			Both cell walls	affix the dye
2. Gram's iodine				****
loune			Dye crystals trapped in wall	
3. Alcohol				
			Crystals remain	Cell wall partially
			in cell wall	dissolved,
4. Safranin				loses dye
(red dye)			Red dye has no effect	Red dye stains the colorless cell

Gram-positive Cocci

- Staphylococci:
 - Catalase-positive
 Gram-positive cocci in clusters
- Staphylococcus aureus: coagulase-positive most important pathogen
- Staph. Epidermidis: and other coagulase negative staphylococci egS saprophiticus



- Streptococci
 - Catalase-negative
 Gram-positive cocci in chains or pairs
- Strep. pyogenes
- Strep. pneumoniae
- Viridans-type streps
- Enterococcus faecalis

Streptococcus

- -S. viridans-oral flora -infective endocarditis
- -S. pyogenes divided by type of haemolysis
 - Group A (Beta hemolytic strep)
 - Pharyngitis, cellulitis
 - rheumatic fever
 - fever
 - migrating polyarthritis
 - carditis
 - immunologic cross reactivity
 - Acute glomerulonephritis
 - o edema, hypertension, hematuria
 - antigen-antibody complex deposition

S. pneumoniae

Gram Positive Bacilli

- Spore forming:

Aerobic spore forming most important is "Bacillus anthracis" that causes "anthracis"

- Non spore forming

-Gram +ve and Gram –ve bacteria Anaerobic Gram Positive Bacilli

1-C.tetani: which causes tetanus (muscle spasm)

2-C.perifringens: causes gas gangrene and wound infection

3-C.butlinum: causes descending weakness (paralysis) and respiratory failure

4-C. diphtheriae: causes Fever, Pharyngitis, cervical LAD (disease in lymph node), and airway. obstruction

Gram-Negative Cocci:

- Neisseria gonorrhoeae (The Gonococcus)
- Neisseria meningitides (The Meningococcus) potential pathogen
- Both Gram-negative intracellular diplococci
- Moraxella catarrhalis (infection of the respiratory system, middle ear, eye, CNS and joints

Gram-Negative Rods Enteric Bacteria they ferment sugars:

- F. coli
- Salmonella
- Shigella
- Yersinia and Klebsiella pneumoniae
- Proteus

- Fastidious Gram-Negative Rods:
- Bordetella pertussis
- Haemophilus influenzae
- Campylobacter jejuni
- Helicobacter pylori
- Legionella pneumophila

Anaerobic Gram-Negative Rods

- Bacteroides fragilis
- Fusobacterium

- Oxidase positive non fermentative (they do not ferment sugars) e.g.
- ✓ pseudomonas (cause infection in patients with weak immunity)
- ✓ Oxidase negative non fermentative e.g. Acinobacter species

Clostridium spp. <u>video</u>

Vibrio cholerae:

- Gram (-) comma shaped, polar flagellae, oxidase (+), Alkaline growth.
- causes **cholera** which is a disease characterized by
- severe diarrhea and dehydration.

Non-Gram-stainable bacteria:

Unusual **Gram-positives**:

- Spirochaetes
- Obligate intra-cellular bacteria

Unusual **Gram-negative** organisms:

- Mycoplasmas:
 - Smallest free-living organisms
 - No cell wall

E.g.: M. pneumonia, M. genitalium

MCQ'S:

- 1) Which of the following is an Aerobic bacilli:
- a) Nocardia
- b) Latobacillus Bacillus
- c) Clostridium
- d) Cornybacterium
- 2) Gram negative has a thick, homogenous sheath of peptidoglycan:

a)True b)false

3) Gram negative has a Lose crystal violet and stain pink:

a)True b)false

- 4) Which of the following can be an example on gram-positive spore forming bacilli:
- A) Clostridium perfringens
- B) Bacillus anthracis
- C) Clostridium tetani
- D) Streptococci

Thank you

Done by:

- 🗸 ظاهرة الجهني
- ✓ الجوهرة الدهش
 - 🧸 روى العوهلي
 - 🗸 نوف المسعود
 - ✓ ريما الحماد
 - 🧸 ريما هزازي
 - 🕨 اية الدايل
 - 🗸 حنان خشیم
 - 🗸 منال الحمدان
 - ح وجدا الهذلان
- 🔪 الجوهرة العمران
 - 🗸 امل افراح
 - الهنوف المهنا

- عبدالعزيز المانع
- 🗸 ناصر القحطاني
- 🗸 محد الرويتع
- 🗸 أسامة عبدالقادر
- 🗸 فراس السويداء
- عبدالعزيز النويبت
 - 🗸 سعيد النصار

MCQ'S answers:

- 1)C
- 2)B
- 3)A
- 4)B