

PHYSIOLOGY PRACTICAL REVISION

DONE BY :

- MOATH ALEISA - RAZAN AL SUBHI -SARA ALMUBRIK -AMAL AFRAH

WISH YOU ALL THE BEST! :)

CBR (COMPLETE BLOOD COUNT)

TYPE OF BLOOD CELLS	Normal Range
RBC'S	4.7-5.2 MILLION/MM ³
WBC'S	4000-11000 /mm³
ргатегет	250000 - 500000
Hematocrit (Packed cell Volume)	45%
нетодьовіп сопс.	14-16 G/DL IN THE BLOOD

NORMAL VALUES OF BLOOD CELLS

THE ERYTHROCYTE INDICES

1. MCV (Mean cell volume) :

Is the volume of average red blood cell measured in cubic micron.

$$MCV = \frac{packed \ cell \ volume \times 10}{RBC \ count \ (millions/mm3)}$$

- it is measured in um³
- if the MCV above normal then RBCs is called macrocytes RBCs.
- if the MCV less than normal , RBCs is called microcytic RBCs.

2. MCH (mean corpuscular hemoglobin):

It determines the mass of haemoglobin in an average erythrocyte.

MCH =
$$\frac{Hemoglobin \ concentration \times 10}{RBC \ count \ (millions/mm3)}$$

- it is measured in picogram (Pq)
- MCH less than lower limit of normal: hypochromic RBCs
- MCH greater than upper limit of normal: hyperchromic RBCs

3. MCHC (Mean corpuscular hemoglobin concentration)

The amount of hemoglobin relative to the size of the cell, and it is measured in percentage or g/dl.

MCHC = $\frac{Hb \ concentration \ gm/dl \times 100}{P \ acked \ cell \ volume}$

So, if i tell the MCHC is 100% that means the whole RBC is hemoglobin.

Indices	Normal value
MCV	85±8 um³
МСН	29±2.5 PICOGram
МСНС	30-36% 32-36 G/DL

NORMAL VALUE OF ERYTHROCYTE INDICES

SOME DISEASES RELATED TO PLATELET, WBCS, RBC'S

- Anemia : decrease in the number of Rbcs , or the amount of hemoglobin in the blood.
 - Polycythemia : increase in the number of RBcs
 - Leukocytosis: increase in the number of WBCs
 - Leukopenia: decrease in the number of WBCS
 - Thrombocytosis: increase in the number of platelet .
 - Thrombocytopenia: decrease in the number of platelet.

You know these, don't you? you are genius :)

TYPES OF anemia:

турез оғ апетіа	THE CAUSE				
Macrocytic (megaloblastic) anemia	Vitamin B12 deficiency				
Pernicious Anemia	 loss of parietal cell of the stomach deficiency of intrinsic factor 				
microcytic hypochromic anaemia	iron deficiency				
Aplastic anaemia	bone marrow failure				
Hereditary Spherocytosis anemia	excessive destruction of RBCs.				
sickle cells anemia	excessive destruction of RBCs.				

TLC (TOTAL LEUCOCYTES COUNT)

Types of WBCs	Characteristics of each wbc					
NEUTROPHILS	 Granular Wbc 2-5 lobes 62 % of WBC's increased in acute inflammation 					
EOSINOPHILS	 granular WBC 2 lobes 2.3 % of WBC's increased in allergic reaction, parasitic infection 					
Basophils	 granular WBc 2-3 lobes 0.4% of WBCs increased in allergic reaction 					
мопосутеѕ	 largest of all Wbc's kidney-shaped 5.3% of WBC's 					
Lymphocytes	 smallest of all Wbc's 30% of WBC's chronic infection, viral acute inflammation 					

ESR (erythrocyte sedmintation rate)

• Erythrocytes Sedimentation Rate ESR

1. What is the clinical significance of E.S.R.?

- This is a <u>non-specific</u> indicator of presence of a disease.
- This is a useful <u>prognostic tool</u>.

2. What conditions are associated with an increased E.S.R.?

- Infections
- Connective tissue disorders
- Inflammatory disorders
- Malignancies
- Anemia
- Pregnancy
- Cancer
- TB
- E.S.R has to be reading after <u>1 hour</u> to measure RBC volume or plasma.
- E.S.R in females is higher than males because they have less RBCs count.
- More RBCs = Less E.S.R.
- ESR for male \approx 10 mm/h is normal.
- ESR for female \approx 15 mm/h is normal.

The name of the tubes is (Westergren Tube)

BLEEDING TIME, CLOTTING TIME

• Determination of Clotting Time:

1] Clotting time: is the time required for the process of coagulation.

2] What is the normal range of clotting time? 3 – 10 minutes

3] What are the clinical conditions in which the clotting time is greater than normal? If CT increased that's mean that we have problems with the factors.

- Hemophilia A & classical Hemophilia: deficiency of factor 8 (VIII)
- Hemophilia B: deficiency of factor 9 (IX) or Christmas factor.

BT= bleeding time (evaluate the platelets function & number only). It's about quantitative & qualitative of platelets. CT= clotting time (evaluate clotting factors)

• Determination of the Bleeding Time:

BT has nothing to do with coagulation factors "CT"

1] bleeding time:

is the time needed for the aggregation of platelet.

2] What is the normal range of bleeding time?

2 – 5 minutes

3] Which blood cells deficiency may prolong the bleeding time? Platelets

4] Name one condition in which bleeding time is prolonged (increased)? Thrombocytopenia.

	Group A	Group B	Group AB	Group O
Red blood cell type			AB	
Antibodies in Plasma	بالم مراجع Anti-B	Anti-A	None	イントンド イトンド Anti-A and Anti-B
Antigens in Red Blood Cell	P A antigen	↑ B antigen	♀ ↑ A and B antigens	None

BLOOD GROUP

HOW TO READ THE RESULT OF BLOOD GROUP

HOW TO READ YOUR RESULTS

DONORS									
5		0-	0+	B-	B+	Α-	A+	AB-	AB+
ř	AB+	•	•	•	•	•	•	•	۲
iii.	AB-	•		•		•		, 🍦	
ECEIVE	A+	•	•			•	•		
	A-	•				•			
	B+	•	•	•	•				
	В-	•		•					
	O+	•	•						
	0-	. 🄶							

RH INCOMPATIBILITY

Rh incompatibility is a condition that occurs during pregnancy if a woman hasRh-negative blood and her baby has Rh-positive blood.

"Rh-negative" and "Rh-positive" refer to whether your blood has Rh factor. Rh factor is a protein on red blood cells. If you have Rh factor, you're Rh-positive. If you don't have it, you're Rh-negative. Rh factor is inherited (passed from parents to children through the genes). Most people are Rh-positive.

QUESTIONS :

- 1. a patient has 100000 platelet, which of these condition is true about this patient:
 - a. increase in the clotting time.
 - b. decrease in the clotting time.
 - c. increase in the bleeding time.
 - d. decrease in the bleeding time.
- 2. Sample problem: calculate the MCV and the MCHC for a subject with a red blood cell count of 4x10⁶ per cubic mm, a hematocrit of 40% and a hemoglobin concentration of 12 g/dl. Describe the subject's red cells, and if he has a problem tell what type of anemia he has and the cause of this problem ...

 a patient visited a doctor and he ordered a CBC test, and the result was MCV = 70 um3 , and MCH = 22 PG . this patient has

.....

4. if you done a total leucocyte count and you find these result:

eosinophil : 450 neutrophil : 6800 basophil: 100 lymphocyte: 3100 monocyte: 580

So, this patient has high chance of having

Answers:

1. C

2. the answer :

$$mcv = \frac{packed \ cell \ volume \times 10}{RBC \ count \ (millions/mm3)} = \frac{40 \times 10}{4} = 100 \ um^3$$

MCHC =
$$\frac{Hb \ concentration \ gm/dl \times 100}{Packed \ cell \ volume}$$
 = $\frac{12 \times 100}{40}$ = 30 g/dl

From these value, we can say that this patient has macrocytic anemia, because he doesn't eat food rich with vit B12 :) or because he has deficiency in intrinsic factor , and the color of the red blood cells is normal ..

- 3. microcytic hypochromic anemia
- 4. allergic reaction due an increase in basophils and eosinophils