MICROBIOLOGY PRACTICAL CLASS

YEAR ONE, FOUNDATION BLOCK

YOU ARE GOING TO LEARN ABOUT

1. Bacteria

What do you need to describe after seeing the slide?

- Important to know Gram reaction (positive if purple or dark, negative if pink or light).
- Shape + arrangement
- The most likely organism.

Kathleen Park Talaro and Arthur Talaro, Foundations in Microbiology, 3e Copyright © 1999 The McGraw-Hill Companies, Inc. All rights reserved.

Bacterial shapes and arrangements

Bacterial shapes and arrangement under the microscope: Cucci

microscopic slides examples

Gram positive cocci in <u>clusters</u> Staphylococci

microscopic slides examples

Gram negative cocci (Diplococci) *e.g Neisseria*

Gram negative bacilli e.g E. coli Salmonella

A gram-stained smear of a CSF sample from a 3 year old child seen in the emergency department presenting with fever and neck stiffness.

The disease is : Meningitis

In the smear, we also need to mention the presence or absence of: Pus, PMN, and the bacteria

It can cause pneumonia , meningitis and other infections

The most

common

infection is

sore throat

This is a bacterium isolated from a child with sore throat and tonsillitis .

A: Describe the Gram stain

Gram positive (Streptococci)

B: Describe the shape and arrangement of the bacteria Cocci in chains

Following is the Gram stained smear of an organism isolated from a **wound infection**.

Describe what you see in the slide above

What is the likely organism

Gram-positive cocci in cluster

Staphylococcus aureus

Management: (Drainage of abscess), because Staphylococcus usually causes abscess

Following is the Gram-stained smear of from urethra of a 25 –year old male complaining of urethral discharge

Bacterial culture media

Microbial growth or culture media

Туре	Purpose
Chemically defined	Growth of chemoautotrophs and photoautotrophs; microbiological assays.
Complex	Growth of most chemoheterotrophic organisms.
Reducing	Growth of obligate anaerobes.
Selective	Suppression of unwanted microbes; encouraging desired microbes.
Differential	Differentiation of colonies of desired microbes from others.
Enrichment	Similar to selective media but designed to increase numbers of desired microbes to detectable levels.

How to differentiate between the various types of Gram +ve cocci

Identification of streptococci by hemolytic reaction

Gamma-hemolytic Streptococcus colonies

No shadows around the bacteria

Alpha-hemolytic *Streptococcus* colonies

green shadows around the bacteria

Gamma

Alpha

Light shadows around the bacteria

Beta

• This is a blood agar growing beta hemolytic streptococci.

Note the clear zone of betahemolysis surrounding the *Streptococcus* colonies when grown on blood agar.

To differentiate between alpha hemolytic bacteria

Optochin test -

S. viridans

S pneumonia

Sensitivity testing

Media examples

Name the medium

Blood agar

Name its most important ingredient (constituent)

Blood

Name its main use

Culture and isolate bacteria

Structure:

Helical Virus

Icosahedral Virus

Electron microscopy; electron micrographs

Herpes virus

Adenovirus

Influenza Viruses

Rabies virus

These are electron micrographs of a virus

What you need to mention

Q1: Name this virus

Q2: Describe its structure.

Enveloped virus , Icosahedral capsid, d.s DNA genome

Herpes virus

Q1: Name this virus

Rabies virus

Q2: Describe its structure.

Enveloped virus , Helical capsid & s.s RNA genome

Only Virus with fiber

Q1: Name this virus

Adenovirus

Q2: Describe its structure.

Nonenveloped virus, Icosahedral capsid & d.s DNA genome

Q1: Name this virus

Influenza Viruses

Q2: Describe its structure

Enveloped Virus with spikes , Helical capsid ,Segmented s.s RNA

3.Parasites

Classification of Parasites

Protozoa	Helminths
Unicellular	Mulicellular
Single cell for all function	Specialized cells
Amoebae:	Round worms
move by psudobodia.	(Nematodes) cylindrical,
Flagellates:	unsegmented
move by flagella.	Flat worms
Ciliates :	1-Trematodes:
move by cilia	leaf-like, unsegmente <mark>d.</mark>
Apicomplexa	2-Cestodes:
(sporozoa) Tissue	tape-like, segmented
parasites	

Flat worms

Round worms

TREMATODES

CESTODES

9 10 11 12 13

Ascaris lumbricoides

Taenia saginata

Protozoa: Giardia lamblia

Giardia lamblia cyst

Mature, infective cyst, containing 4 nuclei
Note a straight axoneme running longitudinally

Giardia lamblia trophozoite

Two nuclei, each with central karyosome Four pairs of flagella

Following is the microphotograph of an organism found in the upper part of the small intestine .

Name the Organism

Giardia lamblia

What is the Stage?

Trophozoite stage

Following is the microphotograph of an organism found in stools

Name the Organism

Giardia lamblia

What is the Stage?

Cyst stage

Fungi can be divided to two types based on morphology

Α

В

Based on morphology, name the two fungal structures in A and B?

A: Yeast e.g. *Candida* B: Mould fungi e.g. *Aspergillus*

Microscopic appearance of yeast and mould fungi

Name the two fungal structures in A and B?

Α

A: Budding yeast cells e.g. *Candida*

B: Branching Fungal hyphae e.g. *Aspergillus*

В

Microbiology TEAM 432

