

PHARMACOLOGY

Team 434

Foundation Block

2- Bioavailability and Distribution

Color Index

Red: Important Notes. Orange: Further Explanation. Purple: Additional Notes.

Objectives

- Define the Major body fluid compartments
- Define the Concept of compartments.
- Define the Apparent volume of distribution (vd).
- Define the Plasma protein binding.
- Define the Tissue binding.

Bioavailability is the fraction of <u>unchanged</u> $Bioavailability (F) = \frac{AUC (oral)}{AUC(I.V.)} \times 100$ drug that enters systemic circulation after Bioavailability Factors affecting TYPES 1-Absolute bioavailability 2-Relative bioavailability

5. Concentration of drugs

- 6. Circulation at site of absor
- 7. Area of absorbing surface
- (Small intestine has large surface area)
- 8. Route of administration.

	Absolute Bioavailability	Relative Bioavailability	
Definition	The bioavailability of a drug after Administration by any route is compared to its Intravenous (I.V.) standard formulation.	It is determined when two products are compared to each other, not to an intravenous standard.	
Compare	A drug compare to the I.V. route of the same drug E.g. (oral & I.V.)	Same drugs Same dosage different companies. E.g. (Tylenol & Panadol)	

Notes:

- I.V. provides 100% bioavailability i.e. F = 1.
- Subcutaneous, intramuscular, oral, rectal, and other extra vascular routes of administration require that the drug be absorbed first, which can reduce bioavailability
- Relative bioavailability is important to get an idea of how different formulations or routes of administration differ in their bioavailability.
- This is commonly calculated in the drug industry to determine that the generic formulation is bioequivalent to another formulation.

Intro to Bioavailability: <u>http://youtu.be/W8aVzIXPgCQ</u>

Bioequivalence

- Two drug products are considered to be <u>bioequivalent</u> when the rates and extents of <u>bioavailability (F)</u> of the two products are not significantly different under suitable test conditions.
- Drug X has bioavailability 85% and Drug Y has bioavailability 80%; Drug X & Drug Y are <u>bioequivalent</u> because there is no a <u>big</u> deference between their bioavailability.

Rate and Extent

• means the amount of drugs and the time required reaching the systemic circulation.

Drugs with high Vd	Drugs with low Vd
Have higher concentrations in tissues than in plasma.	Confined to plasma & interstitial fluid.
Distributed in intracellular	Distributed in extracellular compartments.
Relatively lipid soluble.	Polar comp or lipid insoluble drugs
Not efficiently removed by haemodialysis.	Do not cross BBB or placental barriers.
e.g. phenytion, morphine, digoxin	High MW e.g. heparin – insulin. High plasma protein binding e.g. warfarin.

Notes:

- <u>Large</u> Vd = means <u>long</u> duration of action
- Some drugs remains on our body for a long time because it is lipid soluble.

BLOOD FLOW TO ORGANS

- The greater the blood flow to tissues, the more distribution that occurs from plasma to interstitial fluids.
- Drugs distribute more rapidly to brain, liver and kidney > more than skeletal muscles & fat.

PHYSIOCHEMICAL PROPERTIES

- Most lipid soluble drugs cross biological membranes
- Hydrophilic drugs do not readily cross membranes but go through slit junctions

CAPILLARY PERMEABILITY

- Endothelial cells of capillaries in tissues other than brain have <u>wide slit junctions</u> allowing <u>easy movement</u> <u>& distribution</u>.
- Brain has tight junction Blood Brain Barrier (BBB).

BLOOD BRAIN BARRIER (BBB)

- Only lipid soluble drugs or actively transported drugs can cross BBB.
- Hydrophilic drugs (ionized or polar drugs) can not cross BBB.
- Inflammation as in meningitis increase permeability to hydrophilic drugs
- It can transport Hydrophilic drugs only <u>when</u> <u>Inflammation</u>.
- e.g. penicillin & gentamycin

PLACENTAL BARRIER

• Lipid soluble drugs can cross placental barrier and enter the fetal blood.

BINDING OF DRUGS

Drug binding: drugs have a tendency to bind to tissue or certain plasma.

1. Plasma proteins binding:

- Albumin: Has affinity for acidic drugs as warfarin, phenytoin, aspirin
- Glycoprotein: Has affinity for basic drugs(cationic) as diazepam, quinidine.
- Drugs can bind to plasma proteins (<u>acidic</u> drug bind to <u>Albumin</u> while <u>basic</u> drugs bind to <u>Glycoprotein</u>)

2. Tissue proteins binding:

- Tetracycline bind to bone
- o **lodides** accumulate in salivary & thyroid glands
- Drugs can bind to specific tissue

Drugs exist in two forms inside the body: bound and unbound, the unbound form exhibits the pharmacologic effects.

BOUND	UNBOUND
Non diffusible form	Diffusible form
Cannot combine with receptors	Can combine with receptors
not available for metabolism & excretion	Available for metabolism and secretion
Has long duration of action (t 1⁄2).	Has short duration of action (t½)
inactive	Active form (participate in therapeutic effect)

- Bound forms act as a reservoir or storing method for the drug, as unbound drugs exit the body chemical equilibrium takes place releasing more bound drugs in the body.
- Each drug has a specific bound-unbound rate, resulting in different durations of action.

BINDING OF DRUGS AND ITS EFFECT ON DRUG ACTION

• Usually reversible.

(From bound to unbound forms to reach equilibrium)

• determines volume of distribution (vd)

(The higher the bound:unbound rate the lower the VD)

• Slows drug metabolism & excretion.

(The higher the bound:unbound rate the lower the excretion and metabolism)

- Prolongs duration of drug action (t1/2).
- Result in clinically important drug interactions.

	Which one of the following routes of administrations used in a case of no emergency?				
A. Sublingual administration		B. Oral administrati	on		
C. Rectal administration		D. Parenteral administration			
	E. Both B and D				
	2) Which one of the following ro effect?	Which one of the following routes of administration that mostly has no system effect?			
	A. Parenteral administration	B. Topical applicat	ion		
	C. Inhalation	D. Both B and C			
	E. Both A and B				
	3) are studies of mechanisms and effects of drug action.				
	A. Pharmacodynamics	B. Pharmacokineti	cs		
	C. Pharmacogenomics	D. None of the abo	ove.		
	4) Route of administration that avoid "first-pass" hepatic effects:				
	A. Sublingual	B. Oral			
	C. Transdermal	D. Rectal			
	E. Both A and C				
	5) is not suitable for oily s	olutions or poorly solubl	e substances.		
	A. Intravenous administration	B. Subcutaneous admini	stration		
	C. Intradermal administration	D. Intramuscular admini	stration		
	6) Which one of the following is a character of active transport?				
	A. Unspecific and not saturable				
	B. Requires no energy and no carrier				
	C. Absorption of amino acids		Answers in the last page		
D. Occurs along concentration gradient					

- 7) Drug is most absorbable if it is: A. Non ionized **B.** lonized **C.** Water soluble **D.** Both B and C 8) Penicillin (pKa: 2.74) is best absorbed in the: B. Large intestine **A.** Small intestine **D.** None of the above C. Stomach Most drugs are either _____ acids or _____ bases. A. Strong; Strong **B.** Strong; Weak **D.** Weak; Strong C. Weak; Weak 10) Which of the following drug permeation mechanisms involves polar substances too large to enter cells by other means, such as iron or vitamin B12?
 - A. Aqueous diffusion B. Lipid diffusion
 - C. Carrier molecules D. Endocytosis and exocytosis
- 11) The order of hardest absorbed drug forms (from most to least) is:
 - A. Capsule>tablet>suspension>solution
 - B. Tablet>capsule>suspension>solution
 - C. Capsule>tablet>solution>suspension
 - **D.** Tablet>capsule>solution>suspension

Answers in the last page

Done by Pharmacology Team

Pharmacology434@gmail.com

Answers 1- B
2 -D
3 -A
4-E
5 -A
6- C
7 -A
8- C
9- C
10- D
11 -B