

Lecture 7

Pharmacodynamics: Receptor families.

Objectives:

- 1. Classify receptors into their main superfamilies
- 2. Recognize their different transduction mechanism
- 3. Identify the nature & time frame of their response
- Additional Notes
- Important
- Explanation –Extra-

Superfamilies

A Receptor

Responsible for selectively sensing & binding of a stimulus (ligand) & its coupling to a response via a set of signal transduction machinery.

*Its Structure:

- 1. N terminal
- 2. C terminal

	1-Channel- Linked	2-G-Protein Coupled	3-Enzyme- Linked	4-Nuclear
Function	Conductance	Cell Signal	Cell Signal	Transcription & Translation
Time scale	Milliseconds	seconds	Minutes/ hours	Hours/days
Examples	Nicotinic Ach receptor	Muscarinic Ach receptor	Cytokine receptors	Oestrogen receptor

(جميع الصور في هذا العمل فقط للتوضيح)

1-Channel-Linked

- **Function**: Involved in fast synaptic neurotransmission.
- **Time scale**: occurs over milliseconds.
- **Mechanism**: It is activated directly when a ligand binds to the receptor to open the channel that is incorporated as part of its structure.
- **Examples**: Nicotinic Ach receptor activated by Acetylcholine.

-Different from (Voltage-Gated) Ion Channel: Is activated by a change in action potential not by occupancy of a ligand.

2- G-Protein Coupled

	Adenyl cyclase (AC)	Phospholipase C (PLC)			
2 nd messenger	Cyclic adenosine monophosphate (cAMP)	Inositol triphsph (IP3)	Diacyl Glycerol (DAG)		
Activates a kinase	Protein Kinase A (PKA)	↑Ca intacellular CaM dependent PK (CAMPK)	Protein Kinase (PKC)		
PHOSPHORYLATION OF TARGET PROTEINS					
RESPONSE					

3-Enzyme-Linked

- Function: 1- Involved in slow action of; hormones (insulin), growth factors, cytokines,
 2-They control many cellular functions as motility, growth, differentiation, division & morphogenesis.
- **Time scale**: This usually require many intracellular signaling steps that take time [min. to hrs.] to process.
- **Examples**: [ANP] Receptor and Insulin Receptor

	1.Guanyle cyclase- Linked Receptors	2.Tyrosine Kinase-Linked Receptors			
2 nd messenger	Cyclic guanyl mono- phosph.(cGMP)				
Activates a kinase	Protein Kinase G (PKG)	Auto-phosphorylated Tyrosine kinase			
PHOSPHORYLATION OF TARGET PROTEINS					
RESPONSE					
Example	[ANP] Receptor	Insulin Receptor			

4-Nuclear

- **Function**: 1-Involved in regulation of PROTEIN SYNTHESIS → most slowest in action.
 - 2-They possess an area that recognizes specific DNA sequence in the nucleus which can bind it. This sequence is called a **Responsive Element [RE].** This means that the activated receptors are acting as **Transcription factors [TF]** \rightarrow expressing or repressing target genes.
- **Ligands usually**: lipid soluble or it could be a phosphorylated protein end product of a 2nd messenger signaling
- Examples: Glucocorticoid receptor and Thyroid hormone receptor

	Glucocorticoid receptor	Thyroid hormone receptor	
Location	In Cytosol	Intra-nuclear	
	Once the ligand (drug) is bound to the receptor, a translocation will happen for the complex to the nucleus. In the nucleus, it binds to a certain gene sequence and it will start the process.		
Mechanism	The activated GC R complex: *Up-regulates expression of anti-inflammatory proteins. *Represses expression of pro-inflammatory proteins (by preventing the translocation of their transcription factors from the cytosol into the nucleus).		

1- Classify receptors into their main superfamilies

Channel-Linked Receptor
G-Protein Coupled Receptors
Enzyme-Linked Receptors
Nuclear Receptors

- 2- Identify the nature & time frame of their response.
 - Channel-Linked Receptor

 Milliseconds
- G-Protein Coupled Receptors
 Seconds
 - Enzyme-Linked Receptors

Minutes to Hours

Nuclear Receptors
 Hours to Days

3- Recognize their different transduction mechanism

Channel-Linked Receptor

Activation of this receptor lead to opening of ion gate and ion influx, this will lead to (depolarization or hyperpolarization) which produce a response.

G-Protein Coupled Receptors

*Activation of G protein lead to activation of adenylyl cyclase (AC) or phospholipase C (PLC). *Activation of adenylyl cyclase: lead to activated PKA (protein kinase A).
*Activation of phospholipase C, will activate CaM-PK and PKC.

Enzyme-Linked Receptors

When agonist bind to receptor , it gets activated by two ways :- 1- activated guanyl cyclase enzyme to produce cGMP. example : Atrial Natiueretic Peptide receptor (ANP)

2- the receptor undergoes (autophosphorylation) which phosphorylates other protein that produce a response. example : insulin receptor.

Nuclear Receptors

The ligand (drug) has to cross the cell membrane either directly (If it is highly lipid-soluble) or through a carrier protein to act on the receptor. Once it is bound to the receptor, a translocation will happen for the complex to the nucleus. In the nucleus, it binds to a certain gene sequence and it will start the process.

Check your understanding here ! -MCQ's

http://www.onlineexambuilder.com/pharmacodynamics-iii/exam-11827

Good luck!

Done by Pharmacology team 434

Moneera Aldraihem

Amal Afrah

Rawa alohali

Ahad alsubai

Noha AlGwaiz

Nora AlHelali

Lama alwallan

Sarah Mohammad aljasser

Manal alhamdan

Sara albqami

Rasha bassas

Nouf almasoud

Lamyaa Althawadi

Dhahera aljohani

Sara alsalman

Razan alsubhi

For any correction, suggestion or any useful information do not hesitate to contact us: Pharmacology434@gmail.com