Physiology team

Simple quote: "In three words I can sum up everything I've learned about life: it goes on." Robert Frost

At the end of this session, the students should be able to:

• Identify and describe daily intake and output of water and maintenance of water balance.

•List and describe of body fluid compartments as intra-cellular fluid (ICF), Extra-cellular fluid (ECF), interstitial fluid, trans-cellular fluid, and total body water (TBW).

• Describe the composition of each fluid compartment, in terms of volume and ions and represent them in graphic forms.

• Describe the physiological and pathological factors influencing the body fluid.

- Human body contains 50-70% water.
- Factors that affect total water in our bodies

Daily intake and output of water

In steady state water intake = water loss

Output:

1) Insensible Water loss: (700 ml)

Termed insensible water loss because we are not consciously aware of it.

-Via skin(350 ml) → sweating through evaporation (present even in people who are born without sweat gland) -Via respiratory tract(350 ml)

2) Fluid loss is sweat.(100ml) by sweat gland
3)Water loss is Feces.(100ml)
4)Water loss by the kidney.
(1400ml)

	Normal	Prolonged, Heavy Exercise
Intake		
Fluids ingested	2100	?
From metabolism	200	200
Total intake	2300	?
Output		
Insensible—skin	350	350
Insensible—lungs	350	650
Sweat	100	5000
Feces	100	100
Urine	1400	500
Total output	2300	6600

Hypothalamic thirst center

The hypothalamic thirst center is stimulated:

- By a decline in plasma volume of 10% 15%
- By increases in plasma osmolality of 1 2%

More explanation:

So if there is decline or a decrease in the plasma volume by 10-15% the thirst center in the hypothalamus will be stimulated.

Diencephalon

The transcellular Fluid is not important, the dr talked about it briefly.

34 **J**all 3 Contact us : physiolog

Concentration: it is measured by:

- 1) Molarity = moles/liter \rightarrow M/L.
- **2)** Osmolarity = osmoles/liter \rightarrow Osm/L.
- **3)** Osmolality = osmoles/kg \rightarrow Osm/kg.
- 4) Milliosmoles per liter → (mOsm/L)

More explanation:

Assume that in our body there is 301 mOsm/L in the ECF, that means if we get 1L of plasma from our bodies we will have 301 moles of solutes

Composition of body fluid

--- 10 mEq/L -----140 mEa/L

- ---- 58 mEq/L
- -10 mEq/L
- 75 mEq/L -- 2 mEq/L 0 to 20 mg/dl

2 to 95 gm/dl

---- 20 mm Hg ? 50 mm Hg ? 7.0

16gm/dl (40 mEq/L)

Extracellular fluids

- Sodium is the chief cation(+)
- Chloride is the chief anion (-)

Intracellular fluids

- Potassium is the chief cation(+)
- Phosphate is the chief anion(-)

The blue coloured substances are important

Extracellular fluid Na+----- 142 mEg/L -K⁺ ----- 4 mEg/L --Ca++____2.4 mEq/L ---- 0.0001 mEq/L Ma + + ----- 1.2 mEg/L ----- 4 mEq/L CI----- 103 mEa/L HCO3 ----- 28 mEg/L ---Phosphates ----- 4 mEg/L SO4 --- 1 mEq/L -Glucose ----- 90 mg/dl ---Amino acids ----- 30 mg/dl ------ 200 mg/dl ? Cholesterol 0.5 gm/dl-----Phospholipids Neutral fat PO2 ----- 35 mm Hg -PCO2 ----- 46 mm Hg --pH ----- 7.4 -----2 gm/dl .-Proteins -----(5 mEq/L)

Composition of body fluid

Electroneutrality

Each of the ECF or ICF must have the same concentration of cation(+) and anions(-).

	Plasma (mOsm/L H ₂ O)	Interstitial (mOsm/L H ₂ O)	Intracellular (mOsm/L H ₂ O)
Na*	142	139	14
K*	4.2	4.0	140
Ca**	1.3	1.2	0
Mg**	0.8	0.7	20
a-	108	108	4
HCO3	24	28.3	10
HPO [*] ₄ , H ₂ PO [*] ₄	2	2	11
SO ₄	0.5	0.5	1
Phosphocreatine			45
Carnosine			14
Amino acids	2	2	8
Creatine	0.2	0.2	9
Lactate	1.2	1.2	1.5
Adenosine triphosphate			5
Hexose monophosphate			3.7
Glucose	5.6	5.6	
Protein	1.2	0.2	4
Urea	4	4	4
Others	4.8	3.9	10
Total mOsm/L	301.8	300.8	301.2
Corrected osmolar activity (mOsm/L)	282.0	281.0	281.0
Total osmotic pressure at 37 °C (mm Hg)	5443	5423	5423

We can see that the ECF and ICF have the same osmolality.

Physiology team Ab	nical abnormalities of d volume regulation	
Hypokalemia	 decrease in K concentration in the ECF. 1-2 mEq/L 	
Hyperkalemia	• increase in K 60-100% above normal	
Abnormalities related to Sodium ion		
Hypernatremia	 increase in Na concentration in ECF 	
Hyponatremia	 decrease in Na concentration in the ECF 	

n 434 .com

Imail.

 \mathcal{O}

434@

Contact us : physiology

SIO

So if you took a blood sample from a patient and he has 8 mOsm/L of potassium that mean he has hyperkalemia.

Some Videos

Physiology tean Contact us : physiology434@gmail

34

1) <u>http://bk.psu.edu/clt/bisc4/ipweb/systems/buildframes.html?fluids/</u> <u>bodfluid/01</u>

(change the title from the top to

- Fluid compartment
- Composition of body fluid
 - Electrolytes
 - more...)

Check your understanding!

1. Vomiting is a physiological factor that affect the TBW:

- a) True
- b) False

2. Infants have 73% of their weight is water because :

- a) low bone mass
- b) Low body fat
- c) Smaller amount of skeletal muscles
- d) A+b
- e) All of the options

3. Healthy female, her weight is 50kg approximately her TBW is

- a) 201
- b) 251
- c) 301
- d) 35 I

4. A healthy male has a weight of 70kg, he has _____ L of plasma.

- a) 2
- b) 2.5
- c) 4
- d) 3.5

5. An infant is 10kg weight, he has _____ L of interstitial fluid

- a) 5.5
- b) 1.8
- c) 3
- d) 2

Check your understanding!

6. A patient has 170 mOsm/L sodium in his bloodstream, he has :

- a) Hyperkalemia
- b) Hyponatremia
- c) Diabetes
- d) Hypernatremia

7. The Osmolarity in ECF and ICF is the same

- a) True
- b) False

Done by :

Moath AlEisa Razan Alsubhi Answers: 8.D 3.B 4.D 6.D 7.A 7.A