

Homeostasis I

SIMPLE QUOTE:

Whatever you are, be a good one.

Objectives

At the end of this session, the students should be able to:

- Understand the concept and importance of homeostasis.
- Understand how the steady state is monitored.
- Review the compensatory responses to any change in the steady state.
- Review the disturbances of volumes of ECF and ICF.

• <u>Ion fluxes</u> are restricted (مقید) and move selectively by active transport (require energy) .

الأيونات التي تدخل الخلية تكون مقيدة و محددة و تحتاج إلى طاقة بسبب النقل النشط

Nutrients, respiratory gases, and wastes move <u>Unidirectional</u>.

Plasma is the only fluid that circulates throughout the body and links external and internal environments

Osmolalities of all body fluids are equal; changes in solute (المذاب في السائل) concentrations are quickly followed by osmotic changes.

Osmola<u>l</u>ity: osmoles per <u>kilogram</u> of water Osmola<u>r</u>ity: osmoles per <u>liter</u> of <u>solution</u>

R = Liter

Continuous exchange of Body Fluids

OSMOSIS: Is the flow of water across a semipermeable membrane because of differences in solute concentration.

Regulation Of Fluid Exchange

Osmotic equilibrium is maintained between intracellular and extracellular fluids.

✓ Small changes in concentration of solutes in the extracellular fluid can cause tremendous (المائل) change in cell volume.

Intracellular osmolarity = extracellular osmolarity = \$\approx 300 mosm/L

Osmosis of Water

- ✓ Concentration differences of impermeable solutes establish osmotic pressure differences
- ✓ Osmosis of water is not diffusion of water

N.P: water will flow from the hypotonic solution into the hypertonic solution. This note is just for more clarification, its not mentioned in the slides.

Isotonic, Hypertonic, and Hypotonic Fluids

Isotonic solution

Hypotonic solution

(↓ less) 0.9% solution of sodium chloride & (↓ less) 5% glucose in the plasma. The cell will swell.

Hy S

0.9% solution of sodium chloride. 5% glucose . same in plasma & cell no swell or shrink

Hypertonic solution

(† more) 0.9% solution of sodium chloride & († more) 5% glucose In the plasma.
The cell will shrink.

Isotonic, Hypertonic, and Hypotonic Fluids

- team **MORE SOLUTES**
- outside cell "hypertonic"
- MORE WATER IN CELL "hypotonic"
- over time, cell loses water. **Becomes** "hypertonic"

Shrunk

Normal

Ion concentration in extracellular space

Hypertonic

Isotonic

Hypotonic

N.P: water will flow from the hypotonic solution into the hypertonic solution.

يخرج الماء بشكل أكبر إلى البلازما بسبب زيادة التركيز في البلاز ما

خروج و دخول الماء متعادل بين الخلية والبلازما بسبب تعادل التركيز في البلازما والخلية

دخول الماء بشكل أكبر إلى الخلية بسبب قلة التركيز في البلازما

- LESS SOLUTES outside cell "hypotonic"
- LESS WATER IN CELL. more solutes in cell. "hypertonic"
- over time. cell gains water. becomes "hypotonic"

Concept of Homeostasis

Homeostasis: (The maintenance of nearly constant conditions in the internal environment) Claude Bernard (1813 - 1878)

✓ The internal environment of the body (Extracellular Fluids) is in a dynamic state of equilibrium

✓ All different body systems operate in harmony(الإنسجام) to provide homeostasis

Extreme dysfunction → death moderate dysfunction → sickness

Homeostatic control mechanism

Nervous system

Control center:

determines the set point at which the variable is maintained.

يتم تحديد القيم التي يعود بها الجسم لحالته الطبيعية The three interdependent components of control mechanisms

Sensors

Receptor: monitors the environments and responds responds to changes (stimuli)

The variable produces a change in the body

glands Effector:

Muscles and

provides the means to respond to the stimulus.

تستجيب المؤثر ات لهذه القيم وتبدأ بالعمل على تطبيقها للعودة للحالة الطبيعية

Figure 1.4

Regulation of body functions

Hormonal system

Nervous system

- Endocrine glands.
- Pancreas, thyroid
- e.g.: insulin control glucose level.
- sensory input.
- central nervous system.
- motor output.

Copyright @ 2004 Pearson Education, Inc., publishing as Benjamin Cummings.

Examples of Homeostasis

Homeostatic Imbalance

Disturbance (إضطراب) of homeostasis or the body's normal equilibrium.

Control of Homeostasis

Successful compensation (إصلاح))

homeostasis re-established

Failure to compensate

Pathophysiology illness death

Summary

- \triangleright (Na \downarrow) (K \uparrow) in intracellular fluid.
- lon fluxes:
 - 1- restricted.
 - 2- move by active transport.
- Plasma: is the only fluid that circulates throughout the body.
- Osmolalites of all body fluids are equal.
- Homeostasis: (The maintenance of nearly constant conditions in the internal environment).
- ► Homeostatic control mechanism: Receptor → Control Center → Effector.
- Regulation of body functions:
 - 1~ Hormonal system. 2- Nervous system.
- Osmotic equilibrium is maintained between intracellular and extracellular fluid.
- ➤ Intracellular osmolarity = extracellular osmolarity ≈ 300 mosm/L
- Osmosis: Is the flow of water because of differences in solute concentration.
- Osmosis of water is not diffusion of water.
- Isotonic (no swells or shrink) Hypertonic (shrink) Hypotonic (swelling)

Some Youtube Videos

1) Concept of Homeostasis:

https://www.youtube.com/watch?v=5HS66q OA8g

2) Examples of Homeostasis:

https://www.youtube.com/watch?v=XZxuQo3ylll

3)Isotonic, Hypertonic, and Hypotonic Fluids:

https://www.youtube.com/watch?v=iU8qx4-Z8Mk

4) Fluid and electrolytes

http://bk.psu.edu/clt/bisc4/ipweb/systems/systems/f

<u>.....</u>

(For the first 5 lectures)

Check your understanding!

Q1: which of the following determine the set point of maintain the body?

- A- Stimulus
- **B- Control Center**
- C- Effector
- **D- Receptor**

Q2: diffusion of water Is the flow of water across a semipermeable membrane because of differences in solute concentration .

- A true
- B false

Q3: Isotonic solution:

- A- shrink
- B- swelling
- C- None of the above

Q4: Intracellular osmolarity:

- A 150 mosm/L
- B 700 mosm/L
- C 300 mosm/L

Q5: Quantities of sodium in extracellular fluid is:

- A 139 mosm/L H2O
- B-14 mosm/L H₂O
- C 4.2 mosm/L H₂O

Check your understanding!

Q6: Quantities of potassium in intracellular fluid is:

A - 300 mosm/L H₂O

B - 140 mosm/L H2O

C - 4.2 mosm/L H₂O

Q7: Quantities of potassium in extracellular fluid is:

A - 300 mosm/L H₂O

B - 4.2 mosm/L H2O

C - 142 mosm/L H₂O

Q8: Osmolalities of all body fluids are:

A – equal

B – different

C- None of the above

Done by:

Mohammad Saud Al-Shabanat

8) P 9) B 7) B 7) B 7) B 8) P 8) P