

**Note:** <u>We</u> believe that <u>not all</u> numbers are important; as most numbers are averages thus not accurate + we think it's mentioned for conception not memorization. **BUT** focus on the <u>highlighted</u> ones <u>WE</u> think they're important. **Good luck!** 

-Nouf Almasoud -Moath Aleisa

## Physiology of The Bone Lecture:

| Cortical bone (compact)                                                                            | 80% of human skeleton         |
|----------------------------------------------------------------------------------------------------|-------------------------------|
| Trabecular bone (spongy)                                                                           | 20% of human skeleton         |
| Normal Ca2+ level in plasma.                                                                       | 8.5-10 mg/dL (Mean 9.4 mg/dL) |
| Free ionized calcium                                                                               | 50% of total ECF calcium      |
| Protein-bound calcium:                                                                             | 40%                           |
| 1- Bound to albumin                                                                                | 90%                           |
| 2- Bound to serum constituents                                                                     | 10%                           |
| Phosphate (PO4) in bones                                                                           | 85%                           |
| Phosphate (PO4) in cells                                                                           | 15%                           |
| Phosphate forms as H2P04, HPO4 in ECF                                                              | Less than 1%                  |
| Bones is formed of calcium in the percentage of                                                    | 70%                           |
| Calcium of the bones in the form of hydroxyapatite crystal & phosphate salts (CaP04 and hydroxide) | 99%                           |
| Calcium in bones                                                                                   | 99%                           |
| Calcium in ECF                                                                                     | 0.1%                          |
| Calcium in cell organelles                                                                         | 1%                            |
| Exchangeable Calcium of bone                                                                       | 0.4 - 1% of total bone        |

#### **Resting Membrane Potential and Action Potential Lectures:**

| Value of resting membrane potential           | <mark>-70 , -90 mv</mark> |
|-----------------------------------------------|---------------------------|
| Value of threshold potential                  | <mark>-50 , -65 mv</mark> |
| Depolarization ends (Na channels close)       | <mark>-35 mv</mark>       |
| K+ equilibrium according to Nernst potential  | <mark>-94 mv</mark>       |
| equation. (Inside the cell)                   |                           |
| Na+ equilibrium according to Nernst potential | <mark>+61 mv</mark>       |
| Nernst potential equation. (Outside the cell) |                           |

All values of these 2 lectures are IMPORTATNT!!

## Neuromuscular Transmission Lecture:

| Numbers of vesicles in axon terminal that contains Ach | 300,000 vesicles |
|--------------------------------------------------------|------------------|
| Number of Ach molecules in the vesicles                | 10,000 molecules |
| Synaptic cleft (space) length                          | 20-30 nm         |



# Physiology of Muscles Contraction Lecture:

| Resting membrane potential of muscles   | <mark>-90 mv</mark> "Same as nerve" |
|-----------------------------------------|-------------------------------------|
| Duration of action potential in muscles | 1-5 seconds                         |
| Conduction velocity                     | 3-5 m/s                             |

#### Nerve Conduction Studies and EMG Lecture:

| Oscilloscope sweep speed                    | 2 ms/cm                            |
|---------------------------------------------|------------------------------------|
| Stimulus duration used in 0.2 ms            | Stimulus frequency to 1 second     |
| MNCV Distance                               | 284 mm                             |
| L1 latency at wrist                         | 3.5 ms                             |
| L2 latency at elbow                         | 8.5 ms                             |
| Normal value for conduction velocity in arm | -50 , -70 /sec                     |
| Normal value for conduction velocity in leg | -50 , -60 m/sec                    |
| Amplitude in EMG                            | 300µV(microvolt) , 5mV(millivolts) |
| Duration in EMG                             | 3 , 15 milliseconds                |
| Abnormalities of MUPs                       |                                    |
| 1-Nerve disease                             | 5 mv (ginat MUPs)                  |
| 2-Muscle disease                            | 300μV (small MUPS)                 |

# Physiology of Motor Unit Lecture:

| Number of muscle fibers per motor neurons: |                    |
|--------------------------------------------|--------------------|
| 1-Gastrocnemius                            | 2,000 mucle fibers |
| 2-Extraocular                              | < 10 muscle fibers |

## Muscle Adaptation to Exercise Lecture:

| Maximal contractile force                           | 3 - 4 kg/cm2     |
|-----------------------------------------------------|------------------|
| Size of muscles influence "cross sectional area"    | 150 cm2          |
| Maximal contractile strength                        | 525 kg           |
| Muscles power:                                      |                  |
| First 8 - 10 seconds                                | 7000 kg-m/min    |
| Next 1 minute                                       | 4000 kg-m/min    |
| Next 30 minutes                                     | 1700 kg-m/min    |
| Changes in hypertrophied muscle:                    |                  |
| In mitochondrial enzymes                            | increase 120%    |
| In stored gycogen                                   | increase 50%     |
| In stored triglyceride                              | increase 75-100% |
| In oxidation rate                                   | increase 45%     |
| Oxygen consumption VO2 and Pulmonary ventilation in |                  |
| exerside:                                           |                  |
| VO2 at rest                                         | 250 ml/min       |



| Untrained average male                                                                | 3600 ml/min                                             |
|---------------------------------------------------------------------------------------|---------------------------------------------------------|
| Athletically trained average male                                                     | 4000 ml/min                                             |
| Male marathon runner                                                                  | 5100 ml/min                                             |
| VO2 and VE increased about                                                            | 20-folds between resting state<br>and maximal intensity |
| VO2 Max increased about                                                               | 10% by training                                         |
| O2 diffusion capacity increased about                                                 | 3-folds during exercise                                 |
| Training increased C.O about                                                          | 40% greater than untrained persons                      |
| Enlargement of heart chambers                                                         | 40% in contrast to nontrained                           |
| Cardiac output increases from its resting level about                                 | 5.5 L/min to 30 L/min                                   |
| Stroke volume                                                                         | Increases "50%"<br>from 105 to 162 milliliters          |
| Heart rate                                                                            | Increases "270%"<br>from 50 to 185 beats/min            |
| Use of energy during muscle work                                                      | 20 - 50% of energy released<br>from metabolism          |
| Body temperature during endurance training<br>-Heatstroke-                            | raises from 98.6° to 102° or<br>103°F / 37° to 40°C     |
| Body temperature during endurance training (in hot and humid conditions) -Heatstroke- | raises from 106° to 108°F / 41°<br>to 42°C              |

# Factors in Athletic Performance Lecture:

| 2 high-energy phosphate bonds store             | 7300 calories              |
|-------------------------------------------------|----------------------------|
| CP system energy phosphate bond has             | 10,300 calories/mole       |
| Duration of CP system                           | Fraction of a second       |
| Duration of phosphagen energy system            | 8-10 seconds               |
| Duration of glycogen-lactic acid system         | 1.3-1.6 minutes            |
| Moles of ATP/min in phosphagen system           | 4 moles/8-10 seconds       |
| Moles of ATP/min in Glycogen-lactic acid system | 2.5 moles/ 1.3-1.6 minutes |
| Moles of ATP/min in aerobic system              | 1 mole/unlimited time      |
| Duration in EMG                                 | 3 , 15 milliseconds        |
| Total oxygen dept                               | 11.5L                      |
| 1-Stored                                        | 2L                         |
| A) In lungs                                     | 0.5L                       |
| B) In body fluids                               | 0.25L                      |
| C) In Hb                                        | 1L                         |
| D) In muscle myoglobin                          | 0.3L                       |
|                                                 |                            |
| 2-Consumed in phosphagen and lactic system      | 9.5L                       |
| Alactacid oxygen dept                           | <mark>3.5L</mark>          |
|                                                 |                            |
| Lactic oxygen dept                              | 8L                         |