

L1: Immunology of Asthma

Objectives:

- To recognize the difference between extrinsic and intrinsic asthma
- To be familiar with types of allergens and their role in allergic sensitization
- To understand the inflammatory processes operating in allergic asthma
- To know about the airway remodeling

Done by:

Amal afrah

Mashael Hussein

Hadeel B.alsulami

Talal AlHoshan.

Lama Alkahtani

Sara Alslaman Raghad Abdullah Nada alamri Motivation quote: *The difference between* who you are and WHO YOU WANT TO BE *is what you do.*

• Red = Important Notes

- Orange = Further Explanation
- gray = Additional Notes
- Green = Example
- Navy: boys notes
- Purple: girls notes

For any questions or suggestions don't hesitate to contact us on Immunology434@gmail.com ©

Contents

Overview of asthma	
Induction of Allergic reactions	4
Who does hypersensitivity 1 develop	4
Body Response to Allergens	5
Eosinophils Role in Asthma	6
Role of T reg (regulatory) cell in asthma	7
airway inflammation in asthma	7
Summary	
MCQS	

What is an allergen?

3

Is an antigen that triggers an allergic reaction, it's the main cause of hypersensitivity type 1 (allergy). In bronchi asthma it's a hypersensitivity type I

	Extrinsic "Atopic"	Intrinsic "Non Atopic"
Skin Test	Positive	Negative
Allergy	Associated with allergy	No history of allergy
Allergen	Outdoor allergen	Indoor Allergens
	1- Fungal Spores	1- House dust mites
	2- Grass	2- Domestic pets
	3- Tree	3- Cockroaches
Data	* 60-90% Children	*10-33% of asthmatics
	*50% Adults	*More sever
	*Approximately 75-85%	*Serum IgE levels normal
	of patients have	*More in Older patients
	positive skin test to	
	various allergens	
	*个in IgE Level.	

Induction of Allergic reactions by:

Who does hypersensitivity 1 developed:

Body Response to Allergens in 2 phases:

Early Allergic Response

- Occurs within minutes.
- Manifests as: Bronchial constriction, airway edema, and mucus plugging.
- Includes both sensitization phase and challenge phase.
- It can be reversed by using bronchodilators.

Late Allergic Response

- Happens 4 to 10 hours after the early response.
- Results from infiltration of inflammatory cells.
- Leads to the activition of lymphocytes and eosinophils.
- Responds to anti inflammatory drugs (steroids)

Allergens drive T-cells to proliferate into Th2 type which produces cytokines

They promote Production of IgE by B cells / Eosinophil attraction and infiltration /Airway inflammation /Increased bronchial reactivity

IL4	IL-13	IL-9	IL5
1.Regulates isotype switching in	induces inflammation	Associated with bronchial	induces increased production,
B cells to IgE	Stimulates mucus hyper-	hyper-responsiveness	terminal differentiation and
2.Induces MHC II on antigen-	secretion	In mice it increases	activation of eosinophils
presenting cells			
3. Induces adhesion molecule	Induces sub epithelial	Lung eosinophilia	Release of eosinophils
expression	fibrosis		
4. Activate mast cells and		Serum IgE levels	B-cell growth factor and increases
eosinophils			IgE secretion

Eosinophils Role in Asthma

Eosinophils are thought to play a cytotoxic role, hence they can release certain substances such as major basic protein which can then destroy the bronchial mucosal epithelium

IL-5 is a chemokine responsible for the proliferation of the number of eosinophils in asthma, it's produced by TH-2 cells and mast cells.

Role of T reg (regulatory) cell in asthma

Regulatory T cells suppress the effector mechanisms that induce asthmatic symptoms

Asthmatics may lack these regulatory T Cells.

NOTE: the activation of inflammatory cells such as mast cells and eosinophil's causes the induction of Airway Inflammation, which is one of the characteristic features of Asthma.

Airway Inflammation can take two forms :

<u>1- Increased Broncial Reactivity (Bronchial Hyper-responsiveness</u>

Makes patients prone to develop Asthma attacks when exposed to non-specific allergens such as A- Chemical irritants.
B) Smoke & strong perfumes.
C) Sulphur dioxide (air pollutants)
D)Viral and bacterial respiratory infections

Which is the result of products of the inflammatory cells acting on: Airway smooth muscle cells, Lung fibroblasts, & Mucous glands.

2- Airway Remodeling:

NOTE: Airway remodeling can ultimately lead to fibrosis and irreversible airway obstruction in some patients

- The different between asthmatic and predispose patient is that in asthmatic the chronic phases is stronger .

- In asthmatic patients we use both bronchodilator and anti-inflammatories

E.g. Vento line and steroids.

- <u>Asthma:</u> reversible + hyper-reactivity + inflammation
- <u>Symptoms</u>: Breathlessness + Wheezing + Persistent Cough + Chest tightness.

Classification of Asthma	extrinsic (Atopic) asthma	Intrinsic (non-atopic)
Cause	Allergy	(Jnknown
Percentage of Asthmatics	60-90% Children 50% Adults	10-33%
Target Patients	All	Elderly
Skin Test Result	Positive (immediate)	Negative
Serum IgE Levels	High	Normal
Clinical/Family History	Yes	None
Severity	Less severe	More severe

Allergens in Asthma :

• 1-Indoor allergens E.g Cockroaches

o 2-Outdoor allergens e.g. Grass

 $_{\odot}$ First encounter with allergens \rightarrow production of allergen specific IgE

○ Second exposure to the allergens → mast cells degranulation → release of mediators → Recruitment of eosinophils \Rightarrow pro-inflammatory cell + Bronchoconstriction

• <u>Response to allergen</u> occur in two phases :

- 1- Early allergic response (within minutes): Bronchial constriction + edema + Mucus plugging \rightarrow reversible and responds to bronchodilators
- 2- Late allergic response(4 to 10 hours) : Results from infiltration by inflammatory Cell + Activate of lymphocytes ↓ eosinophils → Responds to steroid (Anti-inflammatory drugs)

○ <u>Cells & role of Cytokines</u>

•Allergens Cause T-cells to transform into TH2 cells

•TH2 secrete Cytokines (IL-4,5,9,13) which promote:

•Production of IgE by B cells •Eosinophil attraction and infiltration

• Airway inflammation

•Increased bronchial reactivity

For any questions or suggestions don't hesitate to contact us on Immunology434@gmail.com ©

Roles of interleukins

IL-4 (during the initial priming of Th2 cell)	IL-13	IL-9	∐-5
1.Regulates isotype switching in B cells to IgE	1.induces inflammation	1.Associated with bronchial hyper-	1. induces increased production, terminal differentiation and
	2.Ctimulates mucus		
2.Induces MHC II on APC	hyper-secretion	responsiveness	
	3.Induces sub-epithelial fibrosis	2.In mice it increases:	
3. Induces adhesion molecule expression		-Lung eosinophilia	2.Release of eosinophils
			from the bone marrow
4. Activate mast cells and		-Serum IgE levels	into CirCulation
eosinophils			3.B-cell growth factor
			and increases Ig
			secretion

1- Airway re-modeling an Outcome of airway remodeling: Can ultimately lead to fibrosis and irreversible airway obstruction in some patients Non-specific irritants:

- 1- Chemical irritants
- 2- Smoke ↓ strong perfumes
- 3- Sulphur dioxide & air pollutants
- 4- Viral and bacterial respiratory infections

Products of the inflammatory cells act on: smooth muscle cells + Lung fibroblasts + Mucous glands à and cause: Airway Remodeling

Role of eosinophil in allergic asthma:

- 1- initiate asthmatic symptoms by Causing tissue damage in the airways of the lungs
- 2- Production of eosinophils is inhibited by IL-10
- Role of regulatory T Cells: suppress the effector mechanisms that induce asthmatic symptoms → So Asthmatics may lack functional regulatory T cells that can inhibit an asthmatic response
- Activation of inflammatory cells (mast cells, eosinophils etc.,) is a major inducer of Airway inflammation
- Airway Inflammation :
 - 1- Bronchial Hyper-responsiveness → Outcome of increased airway reactivity : Predisposes patients to develop asthma attacks on exposure to <u>non-specific irritants</u>

MCQS

1- Asthma is a airway obst	clinical syndrome ruction :	characterized by irreversible	6 - Produc	tion of easinoph	ils is inhihited by:	
A-T B-F			A-IL 9	B-IL 10	C-IL 13	
2 - In skin test the	result of intrinsic a	asthma is	7 - airway	remodeling is ir	reversible :	
A-negative	B- Positive		A-T	B-F		
3 - Serum IgE leve	ls are usually abno	rmal in				
A-intrinsic asthma						
B-extrinsic asthma	1					
C-non atopic asth	na					
4 - which one of th	ne following Stimu	lates mucus hyper-secretion:				
A-IL 4	B-IL 6	C-IL 13			V	1-L
5 - Eosinophils init	iate asthmatic syn	nptoms by :			8	-9 -C
A-release histamir	ne					0-4-0
B-tissue damage					N N N N N N N N N N N N N N N N N N N	3-1 7-7
C-bronchodilator					E	1-L

Wish you the best of luck in you exams - Immunology team