Physiology of Sympathetic Nervous System (Needed for studying SNS PHARMACOLOGY) - $\alpha 1$: Ca++ binds with protein that activates MLCK which phosphorylates smooth muscles in the blood vessels (allow interaction between myosin & actin) \Rightarrow Vasoconstriction in all vessels in body except Heart & Skeletal Muscle. - $\alpha 2$: No cAMP \rightarrow No phosphorylation of Glycogen phosphorylase \rightarrow decrease breakdown of glycogen (Stops GI). - β : cAMP can't phosphorylate Myosin \rightarrow Muscle relaxation \rightarrow vasodilation of Heart & skeletal muscles vessels. | Receptor | Organ | Action | | | |-------------------|------------------|--|--|--| | | Eye | Dilates pupils (mydriasis). | | | | | Blood vessels | Constriction of BV in skin & peripherals (except the heart and skeletal muscle). | | | | | GI | Sphincter : Constriction (retention). | | | | α_{1} | GU | Urinary sphincter: Constriction.Uterus, pregnant: Contraction.PENIS: Ejaculation. | | | | | Secretory glands | Sweat : Localized secretion. | | | | | Secretory glands | Intestinal : Inhibition. Salivary glands: ★ Salivation. | | | | α_{2} | Metabolism | Pancreas (b cells): insulin release. Adrenergic terminals: inhibits NE release. | | | | $eta_{ extbf{1}}$ | Heart | - ♠ heart rate (chronotropic). - ♠ Force of contraction (Inotropic). - ♠ Conduction velocity and automaticity (Dromotropic). | | | | Ρ1 | Blood vessels | - ★ systolic | | | | | Kidney | - ★ renin release. | | | | | Eye | Ciliary muscle : Relaxation. | | | | | Lungs | Bronchial muscle : Relaxation (Bronchodilatation). | | | | | Blood vessels | Relaxation of BV (Vasodilatation) → Coronary & skeletal. Abundant on blood vessels serving the heart, liver and skeletal muscle. | | | | β_2 | GI | → motility and tone. | | | | | GU | Bladder wall : Relaxation.Uterus, pregnant : relaxation (Tocolysis). | | | | | Metabolism | Skeletal muscle : Glycogenolysis , ★contractility .Liver : ★Glucose. | | | | β_3 | Fat cells | Lipolysis. | | | | | Adrenoceptors [ADRs] | | | | | | |----------------|----------------------|--------------------|--------------------|----|----------------------|----| | | α1 | α2 | β1 | β2 | β3 | D1 | | Dopamine | ✓ | - | ✓ | - | - | ✓ | | Norepinephrine | ✓ | ✓ | ✓
(low effect). | - | ✓ (very low effect). | - | | epinephrine | (low effect). | (very low effect). | ✓ | 1 | ✓ | - | - **Epinephrine** works mainly on β receptors and **Norepinephrine** works mainly on α receptors. - **Presynaptic** : α 2 receptor. (Autoregulatory Function) - **Postsynaptic** : $\alpha 1$, $\beta 1$, $\beta 2$, $\beta 3$ receptors. - $\beta 2$: is positive Autoregulatory on $\alpha 2$. Although $\alpha 2$ receptors are found on both presynaptic neurons and postsynaptic cells, they work mainly as autoreceptors to mediate feedback inhibition of sympathetic transmission. | ì | Receptor | Organ | Action | | | | | |--------------|---|---------------|--|--|--|--|--| | | | Eye | Dilates pupils (mydriasis).accommodation for far vision and little effect on IOP | | | | | | į
į | $lpha_1$ | Blood vessels | Constriction of BV in skin & peripherals (except the heart and skeletal muscle). Blood Pressure: Adiastolic (high dose) | | | | | | >
ا | | GI | Sphincter: Constriction (retention). | | | | | | | | GU | Urinary sphincter : Constriction.Uterus, pregnant : Contraction. | | | | | | į | $lpha_2$ | Metabolism | - Pancreas (b cells) : ↓ insulin release. | | | | | | i
i | $oldsymbol{eta}_1$ | Heart | - ♠ heart rate (chronotropic). - ♠ Force of contraction (Inotropic). - ♠ Conduction velocity and automaticity (Dromotropic). - ♠ excitability (Lusiotropic) | | | | | | , | | Blood vessels | - Blood Pressure: ♠ systolic. | | | | | |)
-
- | | Lungs | Bronchial muscle : Relaxation (Bronchodilatation). | | | | | |) | | Blood vessels | Relaxation of BV (Vasodilatation) → Coronary & skeletal. Blood Pressure: diastolic (Low Dose) | | | | | |) | В | GI | → motility and tone. | | | | | |) | β_2 | GU | Bladder wall : Relaxation.Uterus, pregnant : relaxation (Tocolysis). | | | | | | | | Metabolism | Skeletal muscle : glycolysis.Liver : ♠Glucose (Glycogenolysis.). | | | | | | | β_3 | Fat cells | Lipolysis. | | | | | | | CNS →little, headache, tremors & restlessness | | | | | | | ## Good luck! Done by Pharmacology team 434 Mada Al batli Moneera Al Draihem Maha Al-Rabiah For any correction, suggestion or any useful information do not hesitate to contact us: Pharmacology434@gmail.com