

Gas Transfer

(Diffusion of O2 and CO2)

OBJECTIVES

- Define partial pressure of a gas, how is influenced by altitude.
- Understand Dalton's Law
- Understand Henry's Law
- Describe the factors that determine the concentration of a gas in a liquid.
- Describe the components of the alveolar-capillary membrane (i.e., what does a molecule of gas pass through)
- Knew the various factors determining gas transfer
- State the partial pressures of oxygen and carbon dioxide in the atmosphere, alveolar gas, at the end of the pulmonary capillary, in systemic capillaries, and at the beginning of a pulmonary capillary

CONTENTS

1-Partial Pressure :	3
2-Factors Affecting Gas Diffusion :	3
3-O ₂ and CO ₂ Concentration in Alveoli :	4
4-Partial Pressure of O ₂ and CO ₂ (in mmHg) :	4

COLOR INDEX:

- Red = important
- Grey = additional notes

After ventilation of the alveoli with fresh air the next step is the DIFFUSION process of O₂ and CO₂

The rate of diffusion of each gas is directly proportional to the partial pressure of the gas

1-PARTIAL PRESSURE:

Is defined as the Pressure caused by one gas alone, due to constant impact of kinetically moving molecules against surface.

Dalton's law: the pressure exerted by each gas in a mixture of gases in dependent of the pressure exerted by the other Gases

Henry's law: gases in a liquid diffuse from higher partial pressure to lower partial pressure

2-FACTORS AFFECTING GAS DIFFUSION:

N.B

- O₂ has lower MW than CO₂
- CO₂ is 24 times more soluble than O₂

Net Result: CO₂ diffusion approx. 20 times faster than O₂

3-O₂ AND CO₂ CONCENTRATION IN ALVEOLI:

OXYGEN	Resting	* Exercising
Entering pulmonary capillaries/min	250 ml/min	1000 ml/min
Ventilatory rate	4.2 L/min	16.8 L/min (increased 4 times to maintain alveolar PO ₂ = 104 mmHg)

CARBON DIOXIDE (normal):

- -> Rate of excretion= 200 ml/min
- → Alveolar ventilation= 4.2 L/min

4-PARTIAL PRESSURE OF O₂ AND CO₂ (IN MMHG):

PO₂ in atmosphere:

21%*760 mmHg = 160 mmHg

PCO₂ in atmosphere:

0.04%*760 mmHg=0.3 mmHg

Done by:

- Noha Algwaiz
- Sarah Aljasser
- Rawan Ghandour
- Moath Aleisa
- Wajda Alhothali