

Physiology Values

"Respiratory Block"

Important Units:

1L = 1000 ml

1 meter = 3 feet

 $\underline{10}$ meters under sea = $\underline{1}$ atm

Pressure Changes in Lungs During Breathing

Intra-alveolar (intrapulmonary) pressure Between breathes During inspiration End of inspiration During expiration	0 -1 mmHg 0 +1 mmHg
Intrapleural pressure (IPP) End of normal expiration (between breathes) Resting inspiration Forced inspiration Forced expiration	-5 cm H ₂ O -7.5 cm H ₂ O -20 to -40 cm H ₂ O +30 cm H ₂ O
Transpulmonary pressure	TPp = Palv – Ppl
Both lungs in adult Lungs and thorax	200 ml/cm H ₂ 0 110 ml/cm H ₂ 0

Lung Volumes and Capacities

Lung volumes	
Tidal Inspiratory Reserve (IRV) Expiratory Reserve (ERV) Residual	500 ml 3000 ml 1100 ml 1200 ml
Lung capacities	
Inspiratory (IC) (TV+IRV) Functional Residual (FRC) (ERV+RV) Vital (VC) (TV+IRV+ERV) Total Lung (TLC) (TV+IRV+ERV+RV)	3500 ml 2300 ml 4600 ml 5800 ml

FEV ₁ /FVC Ratio			
Normal Restrictive (interstitial pulmonary fibrosis) Obstructive (bronchial asthma, emphysema)	80% Normal (80%) Decreased (<80%)		
Minute Respiratory Volume (MRV=RR x TV)	6 L/min usually		
Respiratory Rate			
Normal Abnormal	12-18/min 2-4/min		
Alveolar Ventilation			
Dead space (air in conductive part) Rate of Alveolar Ventilation ((TV-Dead Space) x RR)	150 ml 4.2 L/min		

Lung Function in Health and Disease

Decline in FEV ₁ after age of 30	
Non-Smoker	25-30 ml/year
Smoker	60-70 ml/year

Gas Transfer and Diffusion

Diffusion Coefficient	
$\begin{array}{c} O_2 \\ CO_2 \\ NO_2 \end{array}$	1 20 0.53
Concentration in Alveoli	
O_2 at rest O_2 during exercise CO_2 normal excretion	250 ml 1000 ml 200 ml/min

Physiology Team 434 Contact us: physiology434@gmial.com

Partial Pressure (in mmHg)

	Atmosphere (760 mmHg)	Air	Alveoli	Arterial Blood (pulmonary capillaries)	Venous Blood (interstitial space)	Tissues
CO ₂	0.04%	0.3	40	40	45	46
02	21%	16 0	104	95	40	20

Due to:

1- Mixing w/old air.

2- O₂ absorbed from alveolar air into pulmonary blood.

 $3-CO_2$ diffused from pulmonary blood into alveoli.

4- -Dry atmospheric air is humidified.

Due to:

1- Physiological Shunt

Hypoxia and Cyanosis

Hypercapnea	PCO ₂ above 52 mmHg (decrease pH)
Cyanosis	more than 5 g/dl reduced (deoxygenated Hb) in blood
Pulmonary blood flow rate	5 L/min
Ventilation-perfusion ratio (V/Q)	
Average (across lung) Apex (moderate physiological dead space) Base (physiological shunt)	0.8 3 0.6

1.34 ml 20 ml 19.4 ml
5 ml 14.4 ml 15 ml 4.4 ml
250 ml/min 200 ml
3% 97%

P50			
Normal Fetal Hb	26.5 mmHg 20 mmHg		
Utilization Coefficient			
Rest Exercise	25% 75%-85%		
Dissolved O ₂ (3%) per 100 ml blood			
Normal Arterial PO ₂ (95 mmHg) PO ₂ Falls (40 mmHg) Normally transported to tissue	0.29 ml 0.12 ml 0.17 ml		
CO ₂ Transport Forms (CO ₂ from tissue each 100 ml blood)	4 ml/min		
Dissolved Bicarbonate Ions Carbaminohemoglobin (with Hb)	7% 70% 23%		
Blood pH (during CO ₂ transport)			
Arterial Venous Arterial and Venous change	7.41 7.37 (higher PCO ₂) 0.04		
Respiratory Quotient			
Normal Diet Carbohydrate Diet Fats Diet	82% = 0.825 1 0.7		

Diffusion Capacity

	Rest	Exercise (both increase 20 folds)	If difference across respiratory membrane is (11 mmHg)	Tissue Consumption
02	21 ml/min/mmHg	65 ml/min/mmHg	230 ml/min	250 ml/min
CO ₂	400 ml/min/mmHg	1200-1300 ml/min/mmHg		

Exercise Duration and Energy Source

Glycogen Lactic Acid System	1.3 – 1.6 min
Phosphagen System	8 – 10 sec
Aerobic System	Unlimited

O₂ Consumption

	Normal	Untrained average male	Athletically trained average male	Male marathon runner	Max pulmonary ventilation	O ₂ DEPT	Max breathing capacity
O ₂ Consum ed	250 ml/min	3600 ml/min	4000 ml/min	5100 ml/min	100-120 L/min	11.5 L	150-170 L/min

High/Low Altitudes

Effect of Increased Barometric Pressure (deep diving) Every 10 m (33 ft) deep At 31 m (100 ft) deep	Surrounding pressure increase by 1 atmosphere Surrounding pressure increase by 4 atmosphere
Effect of Depth on Gas Volume 1 L (sea level)	½ L (at 33 ft)
Effect of Low O ₂ Pressure on Body (ascend) Sea Level 10,000 ft 50,000 ft	P _{atm} = 760 mmHg 523 mmHg 87 mmHg
Alveolar PO ₂ Sea Level 20,000 ft 50,000 ft	PO ₂ = 159 mmHg PO ₂ = 40 mmHg PO ₂ = 18 mmHg
Effect of Acute Hypoxia Beginning of Hypoxia Beginning of twitching/convulsions Un-acclimatized person into come	12,000 ft 18,000 ft 23,000 ft

Done by: Noha Algwaiz