Physiology Values ## "Respiratory Block" #### **Important Units:** 1L = 1000 ml 1 meter = 3 feet $\underline{10}$ meters under sea = $\underline{1}$ atm #### **Pressure Changes in Lungs During Breathing** | Intra-alveolar (intrapulmonary) pressure Between breathes During inspiration End of inspiration During expiration | 0
-1 mmHg
0
+1 mmHg | |---|---| | Intrapleural pressure (IPP) End of normal expiration (between breathes) Resting inspiration Forced inspiration Forced expiration | -5 cm H ₂ O
-7.5 cm H ₂ O
-20 to -40 cm H ₂ O
+30 cm H ₂ O | | Transpulmonary pressure | TPp = Palv – Ppl | | Both lungs in adult Lungs and thorax | 200 ml/cm H ₂ 0
110 ml/cm H ₂ 0 | ### **Lung Volumes and Capacities** | Lung volumes | | |---|--| | Tidal Inspiratory Reserve (IRV) Expiratory Reserve (ERV) Residual | 500 ml
3000 ml
1100 ml
1200 ml | | Lung capacities | | | Inspiratory (IC) (TV+IRV) Functional Residual (FRC) (ERV+RV) Vital (VC) (TV+IRV+ERV) Total Lung (TLC) (TV+IRV+ERV+RV) | 3500 ml
2300 ml
4600 ml
5800 ml | | FEV ₁ /FVC Ratio | | | | |--|---|--|--| | Normal Restrictive (interstitial pulmonary fibrosis) Obstructive (bronchial asthma, emphysema) | 80%
Normal (80%)
Decreased (<80%) | | | | Minute Respiratory Volume (MRV=RR x TV) | 6 L/min usually | | | | Respiratory Rate | | | | | Normal
Abnormal | 12-18/min
2-4/min | | | | Alveolar Ventilation | | | | | Dead space (air in conductive part) Rate of Alveolar Ventilation ((TV-Dead Space) x RR) | 150 ml
4.2 L/min | | | #### **Lung Function in Health and Disease** | Decline in FEV ₁ after age of 30 | | |---|---------------| | Non-Smoker | 25-30 ml/year | | Smoker | 60-70 ml/year | #### **Gas Transfer and Diffusion** | Diffusion Coefficient | | |---|---------------------------------| | $\begin{array}{c} O_2 \\ CO_2 \\ NO_2 \end{array}$ | 1
20
0.53 | | Concentration in Alveoli | | | O_2 at rest O_2 during exercise CO_2 normal excretion | 250 ml
1000 ml
200 ml/min | # Physiology Team 434 Contact us: physiology434@gmial.com ## Partial Pressure (in mmHg) | | Atmosphere
(760 mmHg) | Air | Alveoli | Arterial Blood
(pulmonary
capillaries) | Venous Blood
(interstitial
space) | Tissues | |-----------------|--------------------------|---------|---------|--|---|---------| | CO ₂ | 0.04% | 0.3 | 40 | 40 | 45 | 46 | | 02 | 21% | 16
0 | 104 | 95 | 40 | 20 | #### Due to: 1- Mixing w/old air. 2- O₂ absorbed from alveolar air into pulmonary blood. $3-CO_2$ diffused from pulmonary blood into alveoli. 4- -Dry atmospheric air is humidified. #### Due to: 1- Physiological Shunt #### **Hypoxia and Cyanosis** | Hypercapnea | PCO ₂ above 52 mmHg (decrease pH) | |---|---| | Cyanosis | more than 5 g/dl reduced (deoxygenated Hb) in blood | | Pulmonary blood flow rate | 5 L/min | | Ventilation-perfusion ratio (V/Q) | | | Average (across lung) Apex (moderate physiological dead space) Base (physiological shunt) | 0.8
3
0.6 | | 1.34 ml
20 ml
19.4 ml | |------------------------------------| | 5 ml
14.4 ml
15 ml
4.4 ml | | 250 ml/min
200 ml | | 3%
97% | | | | P50 | | | | |--|---|--|--| | Normal
Fetal Hb | 26.5 mmHg
20 mmHg | | | | Utilization Coefficient | | | | | Rest
Exercise | 25%
75%-85% | | | | Dissolved O ₂ (3%) per 100 ml blood | | | | | Normal Arterial PO ₂ (95 mmHg) PO ₂ Falls (40 mmHg) Normally transported to tissue | 0.29 ml
0.12 ml
0.17 ml | | | | CO ₂ Transport Forms
(CO ₂ from tissue each 100 ml blood) | 4 ml/min | | | | Dissolved Bicarbonate Ions Carbaminohemoglobin (with Hb) | 7%
70%
23% | | | | Blood pH (during CO ₂ transport) | | | | | Arterial
Venous
Arterial and Venous change | 7.41
7.37 (higher PCO ₂)
0.04 | | | | Respiratory Quotient | | | | | Normal Diet
Carbohydrate Diet
Fats Diet | 82% = 0.825
1
0.7 | | | #### **Diffusion Capacity** | | Rest | Exercise
(both increase
20 folds) | If difference across respiratory membrane is (11 mmHg) | Tissue
Consumption | |-----------------|-----------------|--|--|-----------------------| | 02 | 21 ml/min/mmHg | 65 ml/min/mmHg | 230 ml/min | 250 ml/min | | CO ₂ | 400 ml/min/mmHg | 1200-1300
ml/min/mmHg | | | #### **Exercise Duration and Energy Source** | Glycogen Lactic Acid System | 1.3 – 1.6 min | |-----------------------------|---------------| | Phosphagen System | 8 – 10 sec | | Aerobic System | Unlimited | #### O₂ Consumption | | Normal | Untrained
average
male | Athletically
trained
average male | Male
marathon
runner | Max
pulmonary
ventilation | O ₂
DEPT | Max
breathing
capacity | |--------------------------------|---------------|------------------------------|---|----------------------------|---------------------------------|------------------------|------------------------------| | O ₂
Consum
ed | 250
ml/min | 3600
ml/min | 4000
ml/min | 5100
ml/min | 100-120
L/min | 11.5 L | 150-170
L/min | #### **High/Low Altitudes** | Effect of Increased Barometric Pressure (deep diving) Every 10 m (33 ft) deep At 31 m (100 ft) deep | Surrounding pressure increase by 1 atmosphere Surrounding pressure increase by 4 atmosphere | |---|--| | Effect of Depth on Gas Volume 1 L (sea level) | ½ L (at 33 ft) | | Effect of Low O ₂ Pressure on Body (ascend) Sea Level 10,000 ft 50,000 ft | P _{atm} = 760 mmHg 523 mmHg 87 mmHg | | Alveolar PO ₂ Sea Level 20,000 ft 50,000 ft | PO ₂ = 159 mmHg PO ₂ = 40 mmHg PO ₂ = 18 mmHg | | Effect of Acute Hypoxia Beginning of Hypoxia Beginning of twitching/convulsions Un-acclimatized person into come | 12,000 ft
18,000 ft
23,000 ft | Done by: Noha Algwaiz