

Objectives:

- Introduction to metabolic acid-base disorders
 - Metabolic acidosis and alkalosis
- Lactic acidosis
 - Definition
 - Lactate metabolism in tissue
 - Mechanisms involved in lactic acidosis
 - Types and causes of lactic acidosis
 - Diagnosis and treatment

Color index:

- Important
- Explanation
- Extra Notes

Abbreviations:

ECF=Extracellular Fluid

Conc.=Concentration.

HCO3=Bicarbonate Ions.

Cations: positively charged.

Anions: negatively charged.

Metabolic acid-base disorders:

Definition..?

Disorders happen due to changes in bicarbonate conc. in (ECF).

Causes..?

Occur due to high conc. or loss of H⁺ ions

Could lead to ..?

- Metabolic acidosis
- Metabolic alkalosis*

WHY

BICARBONATE??

because it's the main physiological buffer, which maintains PH and resist it's change. (high amount of H+ will react with bicarbonate and

will produce CO2.

 $CO_2 + H_2O \rightleftharpoons H_2CO_3 \rightleftharpoons HCO_3^- + H^+$

*Discussed in next slide but,

Before you go through the next you should know the meaning of

1. Diabetic ketoacidosis:

There's insulin resistance, so instead of burning glucose, It Burns Fatty acids→ketone bodies→Acidosis.

2. Renal tubular acidosis:

Normally urine is alkaline, but in this case: high amount of Na enters and then K will get out of the cell, and also hydrogen ions will get out so it will not be excreted which leads to (acidosis).

	 Metabolic acidosis Elevated H⁺. Decreased HCO3 in ECF. Elevated K⁺. 	 Metabolic alkalosis Decreased H+ Elevated HCO3 in ECF. Decreased K⁺.
Causes.	 1. ↑production of H+ ions. 2. Impaired excretion of H+. 3. Ingestion of H+ or drugs metabolized to acids. 	 Loss of H⁺ ions in gastric fluid due to vomiting Ingestion of sodium bicarbonate. K⁺ deficiency as a result of diuretic therapy."to Hypertension patients"
In patients with	 Renal disease Diabetic ketoacidosis Lactic acidosis Chronic diarrhea Poisoning Renal tubular acidosis 	
Clinical effects	 ↑H+ conc. stimulates respiratory response. Hyperventilation (stimulated respiration) Deep, rapid, gasping respiration (kasmaul's Respiration**) compensates acidosis by getting rid of CO2. Arrhythmia, cardiac arrest Loss of consciousness, coma, death. 	 Hypoventilation (depressed respiration) → ↑PCO2 to compensate alkalosis. Respiratory arrest Confusion, coma, death

Anion gap

It is the difference between the sum of:

Na⁺ and K⁺ (cations) and the sum of Cl ⁻ and HCO₃⁻ (anions)

Importance:

mEq/L

(alkalosis)

Helps in assessing acid-base problems

Normal gap: >11 mEq/L (acidosis)

3-11
Low anion mEq/L gap: <3

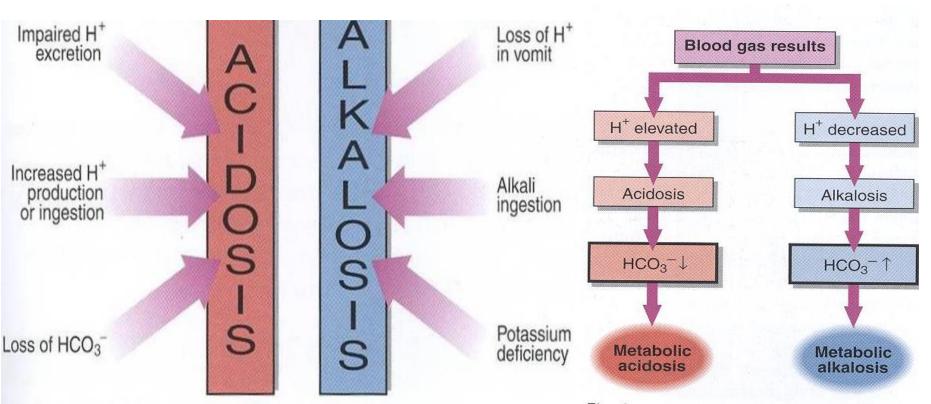
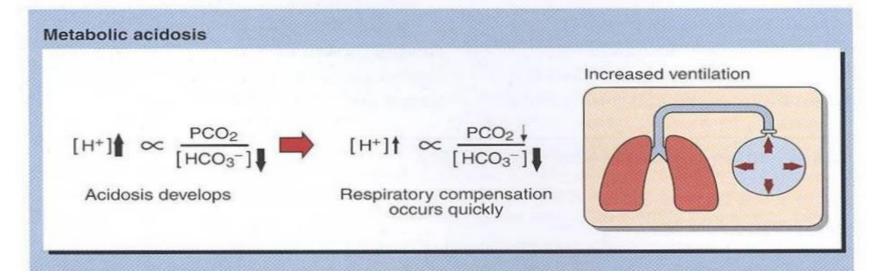
Let
Anion Gap = Nat + Kt - (C1 + HCO3)

2nd
Anion Gap = Nat - (C1 + HCO3)

Anion Gap = Nat - (C1 + HCO3)

2nd: calculating K+ is not that important so we excluded it, because it's found in a really small amount, even if its level changes it doesn't make any difference

Only to recap ::

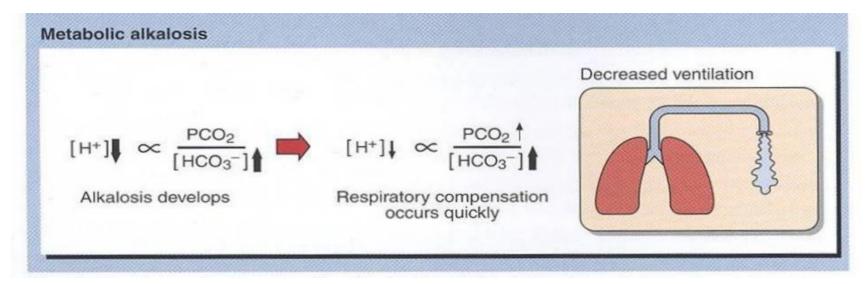
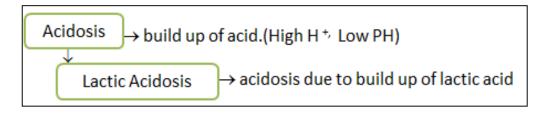

Fig. 3 Reasons for metabolic acidosis and alkalosis.

Fig. 1 Recognizing primary metabolic acid-base disorders by inspecting the HCO₃- concentration.


Different ways in different systems to maintain normal PH:

PH = HCO3 metabolic part PCO2 respiratory part Also, PH= - log (H ions)

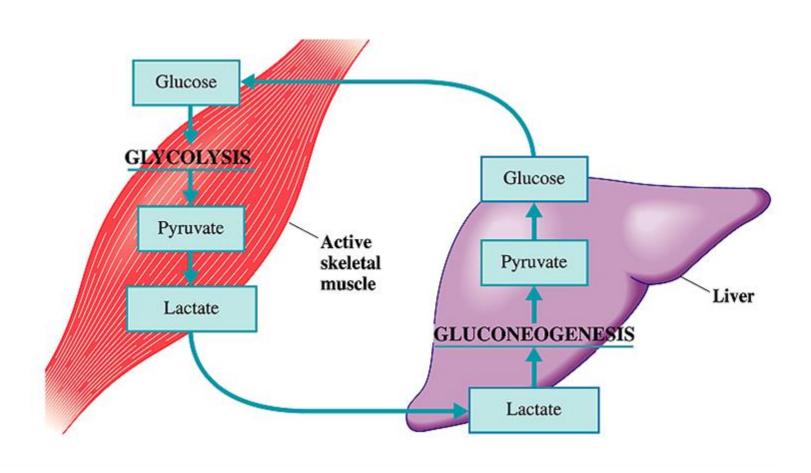
Lactic Acidosis

Definition..?

Elevated conc. of plasma lactate is called lactic acidosis. It's a type of metabolic acidosis

Increasing Lactic acid →decreases Oxygen in tissue

Causes..?


- 1. Failure of circulatory system (hypoxia)
- 2. Disorders of carbohydrate metabolism

Metabolism of lactic acid..?

During vigorous exercise

- Lactate is metabolized in liver (60%) * and kidney (30%) to glucose(Cori cycle). See next slide.
- Some lactate is metabolized to CO2 and water (Krebs cycle).

Cori Cycle

Lactate dehydrogenase

Pyruvate + NADH + H⁺ Lactate + NAD⁺

Mechanisms involved in lactic acidosis

Lactic acidosis can occur due to:

- 1. Excessive tissue lactate production.
- 2. Impaired hepatic metabolism of lactate. It will not be converted to our friend glucose.

Types of lactic acidosis:

- 1. Type A (Most common)
- 2. Type B

Type A

Type B

Due to HYPOXIA in tissues (most common).	
Hypoxia \rightarrow impaired oxidative phosphorylation \rightarrow \downarrow ATP synthesis.	
To survive, the cells switch to anaerobic glycolysis for ATP synthesis→Lactate as the final product.	
The amount of oxygen required to recover from oxygen deficiency is called oxygen debt.	

Due to inadequate supply of oxygen to tissues in:

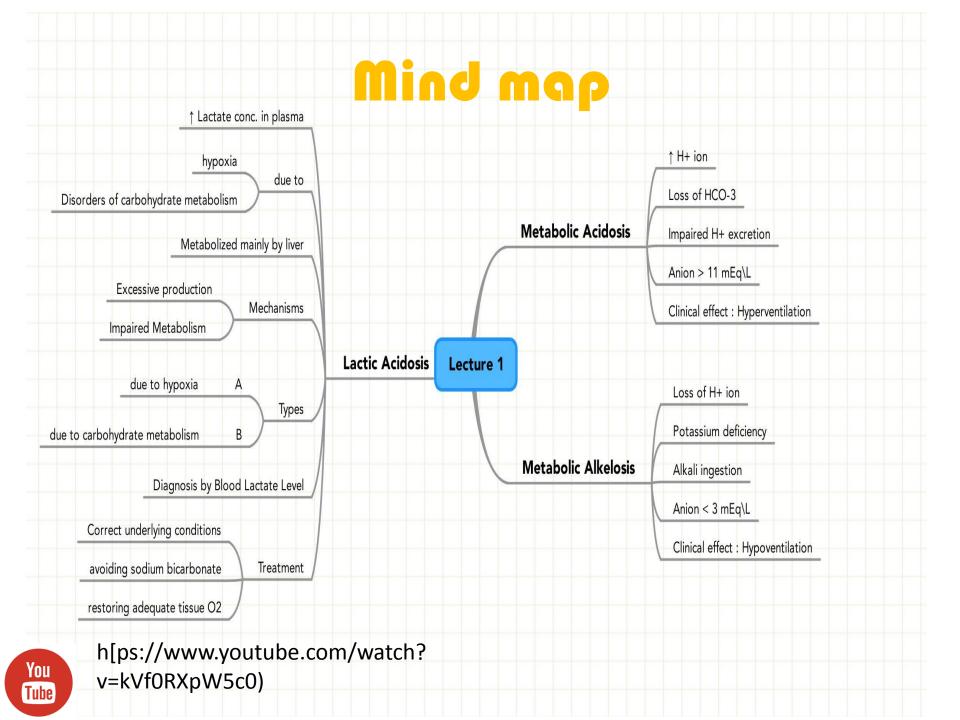
- Myocardial infarction.
- Pulmonary embolism.
- Uncontrolled hemorrhage.
- Tissue hypoperfusion (shock, cardiac arrest, acute heart failure, etc.).
- Anaerobic muscular exercise.

NOT due to hypoxia

Due to

- o Disorders in carbohydrate metabolism.
- -Congenital lactic acidosis is due to deficiency of pyruvate dehydrogenase enzyme.
- Chronic hepatic disease accompanied by shock or bleeding.
- Liver failure.
- Drug intoxication.

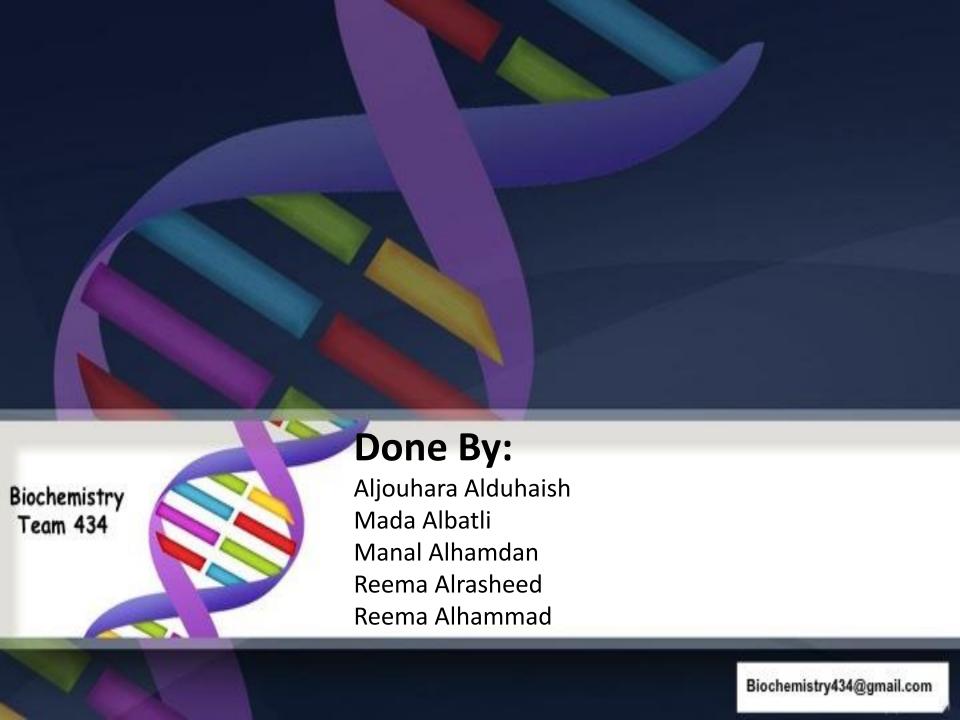
Diagnosis and treatment


Diagnosis done by measuring blood lactate levels:

```
♦ Hyperlactemia: 2 – 5 mmols/L
```

❖Severe lactic acidosis: > 5 mmols/L

Treatment:


- Correcting the underlying conditions
- Restoring adequate tissue oxygen
- Avoiding sodium bicarbonate

MCQs:

Now let's check your understanding ©

- 1- A FEMALE WAS PRESENTED WITH A CASE OF IMPARIED RENAL FUNCTION, WHCH OF THE FOLLOWING IS A COMLICATION?
- A- METABOLIC ACIDOSIS
- B- METABOLIC ALKALOSIS
- C- DIABETES
- 2- WHICH OF THE FOLLOWING IS RELATED TO HYPOXIA?
- A- TYPE A LACTIC ACIDOSIS
- B- TYPE B LACTIC ACIDOSIS
- C- TYPE C LACTIC ACIDOSIS
- 3- WHICH OF THE FOLLOWING IS A MECHANISM IN DIAGONSING LACTIC ACIDOSIS?
- A- MEASURING LACTATE IN URINE
- B- MEASURING LACTATE IN BLOOD
- C- MEASURING LACTATE IN CSF
- 4- TYPE B LACTIC ACIDOSIS IS A COMPLICATION OF?
- A- DISORDERS IN PROTEIN METABOLISM
- B- DISORDERS IN GLUCOSE METABOLISM
- C- DISORDERS IN CARBOHYDRATE METABOLISM
- 5- WHICH OF THE FOLLOWING IS A MECHANISM IN TREATING LACTIC ACIDOSIS?
- A- TREATING THE UNDERLAYING CAUSE.
- B- ISOLATION OF THE PATIENT.
- C- PERSCRIBE ANTIBIOTICS.

